
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Buying time in software development: how
estimates become commitments?

Patrícia G. F. Matsubara
Institute of Computing (UFAM) &

Faculty of Computing (UFMS)
patriciagfm@icomp.ufam.edu.br

Igor Steinmacher
Universidade Tecnológica Federal do

Paraná - Campus - Campo Mourão

igorfs@utfpr.edu.br

Bruno Gadelha
Institute of Computing (UFAM)

bruno@icomp.ufam.edu.br

Tayana Uchôa Conte
Institute of Computing (UFAM)

tayana@icomp.ufam.edu.br

Abstract— Despite years of research for improving accuracy,
software practitioners still face software estimation difficulties.
Expert judgment has been the prevalent method used in industry,
and researchers’ focus on raising realism in estimates when using it
seems not to be enough for the much-expected improvements.
Instead of focusing on the estimation process’s technicalities, we
investigated the interaction of the establishment of commitments
with customers and software estimation. By observing estimation
sessions and interviewing software professionals from companies in
varying contexts, we found that defensible estimates and padding of
software estimates are crucial in converting estimates into
commitments. Our findings show that software professionals use
padding for three different reasons: contingency buffer, completing
other tasks, or improving the overall quality of the product. The
reasons to pad have a common theme: buying time to balance short-

and long-term software development commitments, including the
repayment of technical debt. Such a theme emerged from the human
aspects of the interaction of estimation and the establishment of
commitments: pressures and customers’ conflicting short and long-
term needs play silent and unrevealed roles in-between the technical
activities. Therefore, our study contributes to untangling the
underlying phenomena, showing how the practices used by software
practitioners help to deal with the human and social context in which
estimation is embedded.

Keywords— Software Estimation, Expert Judgment, Padding

I. INTRODUCTION

An estimate is a prediction about effort or costs [1]; a
projection from the past to the future [2]. There is a degree of
uncertainty involved. Nevertheless, in software projects, we
use estimates for purposes that require precision to some
extent. For instance, we use estimates in selecting or staffing
projects, defining schedules, and generating quotes for
customers [3]. Therefore, since different stakeholders interact
to define, discuss, and agree on estimates, it is meaningful to
understand how uncertain they are when communicating or
receiving them. However, there is a large variance of what is
meant by a software estimate, even inside the same company
[4]. Estimators may provide an estimate they mean to be an
ideal effort estimate to finish a task with almost no problems.
Meanwhile, higher management may understand this same
value as a risk-averse estimate. These distinct meanings are
highly likely to go unnoticed by both parties [4]. In this
scenario, a problem arises when establishing commitments
regarding schedules or quotes for customers. The chances of
attaining ideal effort estimates are much lower than risk-
averse ones. This shows we cannot disregard human and
social aspects regarding communication in estimation.

The problem, however, is not only a matter of
communication and inconsistent terminology. The software
engineering literature has warned us on the standard practice
of assuming that our estimates and our goals are identical [5].
In other words, sometimes we mix our desirable business
goals — or targets [1] — with our estimates. In some
scenarios, this is imposed by external forces on the software
teams, such as pressing real or virtual business needs or

schedules’ imposition. So, software professionals end up
committing to a set of features associated with a schedule that
their estimates do not support [6].

In other scenarios, mixing goals and estimates is
unconscious and more subtle. For instance, in controlled
experimental situations, where researchers simulated any
perceived pressure associated with goals, research findings
indicate that the knowledge of unrealistic client budgets led to
lower estimates [7]. Therefore, in more realistic settings, with
real customers involved and other pressing factors—like
fierce competition, targets—are more likely to influence
estimates, impacting their realism. Ultimately, the influence
of desirable business outcomes on estimates leads to
inaccuracies and errors. For instance, in bidding situations,
there is a strong relationship between the focus on selecting
developers with lower effort estimates and observed software
project overruns [8]. Such overruns can significantly impact a
company’s profit levels.

To summarize, an estimate may indeed turn into a target
or a commitment—a promise to deliver a feature at a certain
level of quality by a specific deadline—but the opposite
should not happen [1] for the sake of estimation accuracy and
realism. Still, by having to establish commitments with
management, customers (or customer representatives) could
have a large impact on how software teams estimate their
projects and tasks — and this goes beyond the estimation
process’s technicalities, entering the domain of the human and
social context in which estimation is carried out. Thus, our
research goal is to investigate the interaction between software
estimation and the establishment of commitments in software
companies.

We investigated this interaction in three sequential rounds
of qualitative data collection and analysis in companies using
expert judgment as their estimation method. We used the
outputs of one round as input to the next one's design. In the
first round of data collection, we spent 38 days—
approximately 152 working hours—observing estimation
sessions from two teams in one company. Starting with
observations enabled us to identify the most critical issues
about establishing commitments and estimations to explore
them in-depth in the following rounds. Next, we interviewed
team members from these two teams in addition to a third team
in the same company in the second round of data collection
and analysis. In the third round, we exercised our codes and
categories in other contexts, interviewing software
professionals from four other companies in different locations
and business domains, furthering our understanding of the
studied phenomenon.

Our results indicate that the need to establish commitments
leads to the definition of defensible estimates during
estimation sessions, in addition to getting consensus among
estimators. There may be an emphasis on producing estimates
that team leaders and managers can defend, leading estimators
to adopt more optimistic estimates in some industry situations.

In other words, estimators may deliberately change their
estimates because of the pressure. Another core finding of our
study is the identification of the scenarios in which and
reasons why software professionals use padding—an increase
in estimates beyond the value the estimator honestly believes
is needed to execute the software development task [9]. We
found three reasons why software professionals pad estimates
as part of establishing commitments with their customers. All
these reasons share an underlying theme: buying time to
balance different commitments. That is, software
professionals use padding as a mechanism to manage
situations in which short and long-term commitments conflict,
helping professionals to ensure all of them are satisfied in the
long run. Also, our results indicate the cases when padding is
not possible due to short-term needs—like the customer has
high expectations about one functionality, and it is strategic to
deliver it quickly.

II. BACKGROUND

Even though past research on software estimation has
focused on the creation and improvement of methods [10],
software practitioners still face difficulties with inadequate
software estimation in the industry [11], where the most
prevalent and preferred method is expert judgment [12] [13].
The literature about expert judgment is usually concerned
with accuracy, primarily attempting to increase estimates’
realism. Researchers have investigated the impact of different
factors over the estimates, including human aspects such as
the estimators’ (stakeholders responsible for the estimation)
personality [14], role [15], and level of optimism [16].
Furthermore, research findings show that expert judgment
estimates may be less realistic due to judgmental biases, like
anchoring [17], framing effects [18], and sequence effects
[19]. Despite all of this, factors affecting estimates still
demand more attention from researchers [20].

Among the factors possibly affecting estimates, there is
the issue of using estimates to establish commitments with
management, customers, or customer representatives.
External forces and pressing needs may lead software
professionals to make commitments that their estimates do
not support [6]. In this direction, Jørgensen [21] recommends
distinguishing between the (i) PX effort estimate – that is, the
estimator believes there is an X probability the value will not
be exceeded; (ii) the planned effort, which is the effort used in
the project plan; and (iii) and effort-to-win, which is the effort
acceptable from the perspective of the market or the client.
These terms help differentiate between estimation, planning,
and bidding, which are processes for different purposes.
Failing to make this differentiation hinders the realism of
estimates. However, this distinction is not always clearly
made in the industry, and when an executive asks for an
estimate, what they may really want is a commitment tied to a
desirable business outcome [1].

Regarding the role of customer expectations on estimates,
Jørgensen and Sjøberg [22] found medium to large effect
sizes in one experiment where researchers exposed
participants to expected effort attributed to the projects`
customers. Participants who received specifications with an
exceptionally low number regarding expected effort had
much lower estimates than participants who received high
values. Jørgensen and Grimstad [7] also indicate that
unrealistic client budgets’ knowledge led to lower estimates.

The literature also reports on explicit pressures to change
estimates due to customer or management expectations in
industry. In the ’90s, information system professionals
reported that such pressure for increasing or decreasing
estimates was associated with overruns [23]. Such results
reverberate in the 2000s and 2010s, with reports about
management and customer pressures leading to unrealistic
estimates [24] and inaccuracies [25], intentional
padding/shrinking [26], as well as estimates sometimes being
a cave-in to people with more power [27].

The customer's selection strategy also impacts the
estimates, and there is a strong relationship between the focus
on selecting developers with lower effort estimates and
observed overruns [8]. In an anecdote of a real-life situation,
Halkjelsvik and Jørgensen [28] comment on a software
company manager who reports that their company only wins
contracts when they are overoptimistic about the time to
complete the work. Nevertheless, they usually find out later
that the estimate used as the basis for the price offer – their
commitment – was too low. When applied to bidding
scenarios, we call this the “winner’s curse”, which in high
uncertainty situations and a high number of bidders may lead
companies to have lower profit levels [29]. The winner’s
curse is a byproduct of the selection bias, which occurs when
the client’s selection process for providers leads to an over-
representation of proposals based on overly optimistic
estimates [8].

In our study, we further investigated the issues related to
the interaction of the estimation process and the establishment
of commitments in software companies, going beyond
bidding situations. We explain how we executed this study to
accomplish our research goal in the next sections.

III. RESEARCH METHODOLOGY

To investigate the interaction between the software
estimation and the establishment of commitments in software
companies, we performed a qualitative study, which we detail
in this section.

A. Research Question

We defined the following research question for this study:
RQ - How are software estimates used to establish
software development commitments? The focus is on
identifying the interactions among stakeholders to define
final estimation values, including the strategies for
reaching an agreement on estimates. We also look for any
strategies that software professionals use during the
conversion of estimates into commitments.

B. Studied organizations and participants

This research study had two phases. In the first phase, two
companies agreed to participate. We selected one of them,
referred to as Company A. The main criterion for selecting the
company for this phase was: they must have at least one
software team estimating their tasks regularly. We did not
include the other company because their teams did not
perform explicit estimation activities as part of their software
process.

Company A is medium-sized, with over 100 employees,
located in Campo Grande, MS – Brazil. They develop and
maintain software for large telecommunication companies,
working in close collaboration with their customers. They
have four software development/maintenance teams, three of

which participated in the study. Although Team A1 and Team
A2 share the team manager and one senior developer, they
have one dedicated team leader each. The team leaders also
act as product owner and software analyst for their teams.
Team A3 has a different organizational structure, with one
team manager who also plays the team leader role. In A3, the
software analyst/product owner is not the team leader.
Additionally, all teams are composed of software developers
and software testers.

The company adopted hybrid development
methodologies, which is the norm in the software industry
[30]. Several of their practices come from Scrum, like sprint
planning, daily stand-up meetings, and sprint reviews.
Nevertheless, they did not apply Scrum by the book entirely.
For instance, regarding roles, the teams had specialists and
were not cross-functional. Regarding practices, tasks were
mostly self-assigned, but we also observed the team leader
assigning tasks to specific team members. Masood, Hoda, and
Blincoe [31] have reported these and other variations as part
of Scrum in practice, emphasizing that some are not
necessarily a misuse or abuse of the method.

Although Planning Poker is the most used estimation
technique in agile software development [32], Teams A1 and
A2 abandoned it after trying for a while. Their software teams
were inexperienced and young, leading to slow justification
rounds and long estimation sessions when using Planning
Poker. They switched their technique. Their estimation
sessions have the team leader’s presence and at least one
estimator representing team members for each of their primary
software development activities: backend development,
frontend development, and software testing. The estimators
are not necessarily the team members allocated for the
estimated tasks, although there is a high probability that they
are. As we illustrate in Fig. 1, the estimation sessions
encompass two main steps: gathering individual estimates
from the estimators responsible for each activity in software
development (Step 1) and deciding the team's internal
estimate (Step 2), which is the value that the team commits to
with the team leader. After the estimation session, the team
leader converts the internal estimate to the final estimate,
defining the team’s commitments with the customer (Step 3
in Fig. 1).

Team A3 still uses Planning Poker for estimating.
Interestingly, they report they also want to change their
method for the same reasons Teams A1 and A2 did. All teams
describe their user stories and tasks in cards and make them
available to the whole team on Jira. Teams A1 and A2 also
maintain a physical board for their tasks, updated daily.
Additionally, all teams carry out the estimation of items and
tasks immediately before the beginning of their sprints.

In the second phase of the study, we invited software
professionals from other companies to understand our results
in different contexts. We interviewed four practitioners from
four other companies located in other cities. We selected such
participants because their teams conduct software estimation

activities regularly. All the participants reported that their
companies use agile practices. All of them rely on expert-
judgment for estimation, while none adopt Planning Poker.

These participants are from two companies, B and C,
which are from Manaus, AM – Brazil. Company B works
developing software solutions for a large multinational
electronics company and employs over 1,000 people.
Company C is a medium-sized company, with around 100
employees in total. They develop a wide variety of software
solutions for companies in the electronics business,
telecommunications, car dealerships, and others. Companies
A, B, and C have in common the fact that they develop
customized software solutions for specific companies.

Companies D and E develop subscription-based software
for specific business areas. Their estimation process revolves
around the launching of new functionality or new products.
Company D is a large company in North Vancouver, BC –
Canada, with 1,200 employees, developing software for the
real estate business. Company E is in Curitiba, PR – Brazil,
providing solutions for the financial area. It is a large-sized
company, with around 700 employees.

C. Data collection and analysis

Our study was conducted in three sequential rounds of data
collection intertwined with data analysis: two rounds in Phase
1, focused on one company, and one round in Phase 2,
expanding the research to other companies. In each round, we
collected and analyzed data, using the output from one round
to inform the next one’s design, as Fig. 2 shows.

In the first round of data collection and analysis, we
observed software estimation sessions and daily stand-up

Fig. 1 – From estimates to commitments.

Fig. 2 – Phases and rounds of qualitative data collection and analysis.

meetings 1 in Company A, as Table I shows. One of the
researchers spent half-days in the company for 38 days from
January to March of 2020. In total, this represents
approximately 152 hours. Thus, the researcher was available
to participate in their activities whenever there was the
opportunity to do so. The researcher participated in all the
estimation sessions during these days, taking notes of
occurrences related to the research questions.

TABLE I. OBSERVATION SESSIONS

Team Observation sessions Participants

A1 Three estimation sessions Team leader, software
developer, and software tester

A1 20 daily stand-up meetings All A1 team

A2 One estimation session Team leader, software
developer, and software tester

A2 20 daily stand-up meetings All A2 team

After observing the first estimation session, we analyzed
the collected data, focusing on open coding [33]. We then
proceeded with the other observation sessions. Again, we
conducted open coding procedure to analyze the data. This
round also resulted in an interview guide based on the main
results from the analysis of the data from the observation
sessions. For instance, we noticed that padding was a recurring
theme in estimation sessions. For instance, we included the
following question in our interview guide: 2 “In which
situations do you add padding to software estimates?”

In the second round, we interviewed Team A1, A2, and
A3 members, as shown in Table II, resulting in improvements
to our set of codes and categories. We also changed our
interview questions to focus more on disagreement resolution
issues during estimating and on padding due to the analysis
we had up to that moment. After the second round of data
collection and analysis, we decided to investigate other
contexts, moving to Phase 2 of the study. We expected that
this would either confirm the results we found so far or lead
us to discover more aspects about them. We proceeded to a
third-round collecting data, in which we interviewed software
professionals from the other four companies – represented in
Table II as Companies B, C, D, and E.

TABLE II. INTERVIEW PARTICIPANTS3

Interviewees Roles Company

P1, P2 Team Manager A

P3, P4, P5 Team Leader, Product Owner, Software
Analyst

A

P6, P7, P8 Software Developer A

P9 Team Leader B

P10 Business Analyst, Software Analyst C

P11 Software Developer D

P12 Software Developer E

1 We included the guiding questions for observation here:
https://www.doi.org/10.6084/m9.figshare.13105319
2 We included the interview scripts here:
https://www.doi.org/10.6084/m9.figshare.13105319

One of the researchers interviewed the participants, taking
notes of their answers. At this point in the research, we
intertwined data collection and analysis even more by coding
each interview before proceeding to the next one.

During the data analysis, we created codes associated with
the relevant parts of the annotations. The researchers held
meetings to reach a consensus about the codes and ensuring
they were grounded on data. We applied constant comparison
throughout the analysis leading to the continuing evolution of
the set of codes. We also discussed the relationships between
the codes during the meetings as part of axial coding [33].

Finally, we presented our research results to participants
of Teams A1, A2, and A3. They considered that the results
were correct and reflected their current practice.

IV. RESULTS

This section presents our research findings regarding RQ -
How are software estimates used to establish software
development commitments? We present the codes and
categories 4 – these last ones in bold – starting with the
phenomenon of defensible estimates. Next, we move our
attention to the padding phenomenon, a central part of
converting software estimates into commitments. We explore
the padding scenarios and the reasons to pad.

A. Defensible estimates

Since the teams we observed decided to abandon Planning
Poker, their estimation sessions start with each participant
providing their individual estimates. Following, the team
defines their internal estimate. If they all agree on the
individual estimates, then the value is set. However, they may
face disagreements, leading them to adopt disagreement
resolution strategies. For instance, the estimator may justify
the given individual estimate as one step towards
disagreement resolution, even though it may not be enough. If
everyone accepts the justification, the proposed individual
value is accepted. However, if they reject the justification,
another step is to do another estimation session later. We also
observed that when a disagreement occurs, they might set the
estimate as an average of the proposed individual values or as
the highest individual estimate.

Finally, another occurrence we observed in the face of
disagreements is that the estimator changes their individual
estimate. These changes happen in two situations: (i) when the
other estimators strongly disagree with an individual estimate
or (ii) when the team leader expresses that the internal estimate
value is not defensible, which we illustrate with the following
excerpt of an estimation session. In any case, the estimator
moves to a more optimistic estimate.

OP163: “I believe it takes three to four days to full development

because for each period of the day developing for the web, I take

two periods developing for the mobile platform. (...)
OP17, regarding software testing: “It takes four days in total.

Two days for local testing and two days for beta testing, because

we have to evaluate the impact on System Y
5
”.

3 Participants we did not interview but who were involved in
observation sessions were labeled as Observation
Participants (OP): OP13-OP20.
4 See more of our categories, codes and supporting quotes
https://www.doi.org/10.6084/m9.figshare.13105319
5 Names are omitted due to confidentiality issues.

P4 made a totalization, registering it would take five days for
backend development, plus five days for frontend development
(in parallel with the backend), plus four days for testing -
therefore, nine days in total;
P4: “I’ll wait for the confirmation of the frontend development

estimate. But you have to give it to me today.” Next, thinking
aloud: “But I don’t know whether I can defend nine days...”
So, OP17 answered that it could be one day and a half for each
test type.
Then P4 said: “well… I can defend for eight days!” - Estimation
session from Team A1

The team leader considered the internal estimate not
defensible at first. Then, one of the estimators changed his
position – his individual estimate – to a more optimistic one
to help the team leader to get to a defensible estimate. This
occurrence led us to ask the team leader what makes an
estimate defensible: “Some estimates that software developers
give me have too much padding, then I don’t buy it. So, if they
don’t convince me, I won’t be able to defend it. If they explain
it to me during the estimation session and it makes sense, I
accept it.” (P4, Team Leader). Therefore, when the individual
estimate is too high, it is not defensible. The team leader has
some notion about the task complexity because the senior
developer and the team manager give a baseline estimate for
the task before the estimation session.

Nevertheless, individual estimates with explainable
padding are acceptable, and discussing the solution options
also contributes to the defense. The degree of novelty and the
complexity are the task characteristics that explain an
estimate, making it defensible, as the team leader continued to
explain: “So, a defensible estimate to me has a lot to do with
the task complexity. I ask myself: are there many business
rules involved in this task? Is there anything like this we have
done before? If it is too novel or difficult, we must understand
it and build the logic behind it with the team to inform the
scope description.” (P4, Team Leader).

To lower the pressure while maintaining a good
relationship with the customer, the team leader devised a
strategy to stand for the final estimates: detailing the items that
make up the task and the estimate. P4 (team leader) talks about
this: “My customer is highly resistant to the deadlines I give.
He tries to shorten all of them. The way I found to deal with
this is to detail all the items of the estimate. This strategy is
becoming our standard one, especially when the estimate is a
little high because then the customer has no arguments. (...) A
few days ago, I had registered a task on our tool, and the
customer called me to talk about the deadline. When I
informed him, he was like: "What?!" In these situations, I have
to explain to him the estimate, showing item by item as I have
registered in the tool, confronting them with the scope
description (...) And I inform the deadline for each item. For
more complicated tasks, I refine even further. So, the customer
is accepting the deadlines I tell him. And this pressure is
highly contingent on the customer”.

Takeaway message 1: Apart from getting consensus from the
team and making estimators committed to their estimates,
estimation sessions also focus on building a defensible estimate.

B. Padding scenarios

Our results suggest that the padding phenomenon is
essential in establishment of commitments with the customer.
We identified three scenarios for the interaction between

estimate and padding: (i) the estimator embeds padding in the
individual estimate; (ii) the team leader adds padding to the
internal estimate; and (iii) no padding at all is added to the
estimate.

The first scenario is when the estimator embeds padding
in the individual estimate. In this case, the estimator pads as
part of giving their individual estimate. About this, P11
(software developer) states that: “Every developer has their
own estimation method. I believe we all add padding
internally, but no one talks about it. As I am an optimistic
fellow, I always pad, but I don’t talk about it. If I think it takes
one day, I will say it takes three. Some people may do it for
slacking, but I do it because of my optimism since I have
already had trouble giving lower estimates. Especially at the
beginning of projects.” P4 (team leader) also talked about it in
one interview: “The software developer wants to work without
pressure. I receive lots of estimates with padding from them.
It is rare to get an estimate of something to be done in one
hour.”

The second scenario is when the team leader adds
padding to the internal estimate—i.e., to the estimate the
team collectively agreed on—before committing with the
customer. The following quote from P3 (team leader) shows
it: “So I take the team’s estimates, and I add some padding -
one or two days if the task is small and up to five days if the
task is large - because the team is too inexperienced. (...) I
always consider whether the person giving me the estimate is
more optimistic or pessimistic. (...) In my team, we have a
super optimistic fellow. So, we need to add more padding
before giving the customer the estimate.”

Also, the interviews with team leaders revealed that the
presentation of estimates during the establishment of
commitments requires care. Uncertain estimates are
interpreted as single-point estimates. Approximate values are
interpreted as padded estimates — and the customer tends to
reject them. P4 explains it: “Also, if I tell my customer the
estimate is around fifteen days, he will assume it is exactly 15
days. P1 told me that in functionality Z he informed an
estimate in the “around of” format, and it became a
commitment.” P3 also explains more about it: “In this process,
we realized that if we inform the customer deadlines with
round numbers – like 10, 20 or 30 days – he always complains
the value is high because he suspects we rounded the number.
So, if the software developer said it takes 15 days, we inform
the client it will take 17 days, for instance.”

Another important finding of our study regarding such a
scenario is padding awareness: the team leader sometimes
conceals from the estimator the padding in the final estimate.
P4 (team leader) discusses it: “If the team tells me they are
spending six days on it, I say we will spend more - within
acceptable limits. And I do not tell the developers of the
padding I added”. One software developer (P8) also revealed
more about how he suspects the team leader adds padding, but
software developers are not aware of it: “I believe P3 [the
team leader] adds padding later, but it is not of our concern.
(...) During the meetings, they told us that the padding is to
raise the confidence of the team leader with the customer.”

Therefore, when the team leaders add padding to the
internal estimates, they may be trying to raise the confidence
that the team will keep commitments with the customer.
However, they conceal the padding they added from the
estimators, making estimators accountable for their individual

estimate if the task is given to them. P8 (software developer)
reinforces this: “They [team leaders] don’t convert the
padding to the team - at least it is what they said in the
meeting. If the developer estimates five days during the
estimation session, he has five days to finish the task.” Other
reasons for concealing the padding from estimators are that
high estimates may give the impression there is plenty of time
to execute the task and lead to lower productivity.

However, there are situations when the estimators are
aware of the padding the team leader adds. The transcription
below shows an observation session where the team leader
first says there is no room for padding for software
development activities. Nevertheless, later during the
meeting, he adds padding to the software testing activity.

OP13

listed all the classes he remembered and concluded that the

task would take at least one ideal day of work, depending on the
person who will execute the task; OP14 agreed with him;
OP15 said that in his opinion, it would take two days; OP13
reaffirmed that his estimate was contingent on the person
executing the task;
OP14 commented that they always pad a little. However, P3 said
that this week there is no room for padding.
OP20 estimated one day for testing. P3 said he would count one
day and a half to test because of other stuff, which is also
necessary to verify.
In the end, the estimate for development only was one day and a
half. - Estimation session from Team B

Overall, estimators are aware of padding when a similar
task is complex, the task involves problematic parts of the
system, or there is a need for more robust testing. In the
specific case of the abovementioned estimation session, the
team leader needs the padding to ensure that they will have
enough tests – and the team leader makes it straightforward
for the team that this is how they are going to use the padding.
In doing so, the team leader is limiting the use of padding.

The third scenario is when no padding at all is added to
the estimate. Different reasons cause this scenario during the
establishment of the commitments with the customer: when
the task is urgent, the task is simple, the task is noticeably clear
to managers, or when the task has a pre-defined deadline.
Additionally, when the customer has a high expectation over
the task, it is also impossible to pad. The same happens when
the task seems simple, although it is not, and the customer has
some technical background. In one of the companies, their
context requires technical expertise, which may not be

available in their team. In this case, no padding is possible
when there are qualified personnel to execute the task.

P3 (team leader) mentioned several of these reasons when
asked about when padding is impossible: “In situations where
an outsider would consider the card to be simple, but the
implementation is like “may God help us.” For instance,
module W's code is quite tricky because there is an impact in
many other parts of the system. However, from the perspective
of the customer, it’s simple. (…) In urgent situations, it is also
impossible to pad. Also, in tasks in which the customer has
high expectations, we cannot make late deliveries. Those are
the cards that lead us to overtime work. Another case is when
the task is a promise from our board of directors. We receive
them closed, with a defined deadline. (…) We also consider
who the customer is because sometimes he has a technical
background and will not accept padding, depending on the
task. If the task is about labeling a field, he won’t accept
padding at all.” Therefore, as the different padding scenarios
show, there are tasks for which padding is not viable.

Takeaway message 2: The use of padding varies across three
scenarios: (i) the estimator embeds padding in the individual
estimate; (ii) the team leader adds padding to the internal
estimate; and (iii) no padding at all is added to the estimate.

C. The reasons to pad

Our data also revealed that there are mainly three different
reasons to pad: (i) padding for contingency buffer, (ii) padding
for completing other tasks, and (iii) padding for improving the
overall quality. We give an example of each of these reasons
in Fig. 3, which we explain in the next paragraphs. The
example is a simplification of reality since a real task’s
padding may involve all three reasons to pad. Our illustration
makes a didactic separation of each reason. It also includes the
example of a task with no padding at all – Task A – to aid in
the development of our argument for one of the reasons to pad.

First, team leaders and estimators may use padding for
contingency buffer to deal with risks that may occur during
software development and maintenance of a task and raise the
chances to fulfill deadline commitments. We illustrate this
reason to pad in the case of Task B in Fig. 3, where padding
was added to Task B’s estimates to keep a reserve to deal with
risks associated with this task. P8 (software developer)
discusses it when questioned about why software developers
give higher estimate values: “Usually, it is because we are
afraid of the problems we will have to face. Like, in larger

Fig. 3 – Example of reasons to pad.

tasks or tasks that involve implementation in some specific
parts of the system, which have higher chances to have a
problem there.” The estimator also adds padding to their
individual estimate, fearing accountability due to delays. It
may also be the case that the estimator considers himself
optimistic, or even because the task depends on another one
executed by a teammate known to make deliveries with errors.
Padding individual estimates may also happen when
estimators have too many doubts regarding the task features,
leading senior developers to consider problems during
development.

Estimators also pad their individual estimates for more
technical reasons, like the lack of familiarity with the
company’s code, if they have just begun a new job, as P11
(software developer) discusses: “When I am at a new
company, as I am not familiarized with their code, I add a high
value of padding.” Alternatively, they add padding when there
are dependencies among tasks demanding lots of
communication. Another more technical reason is when the
task is related to problematic system modules.

Padding for contingency buffer is also useful when the
team leader adds padding to the internal estimate when
generating the final estimate. It may be used due to the tasks’
characteristics, like when the task is large, critical, complex,
or ill-defined. P9 (team leader) talks about this when asked in
which situations he pads estimates: “When we cannot define
the feature very well. We need to carry our feasibility studies,
but there is no time to do it because it is time to make a
proposal”. It also happens when the implementation requires
a learning curve or there is no time to investigate more about
the task. Additionally, the team leader pads the internal
estimate due to experience issues, like the team leader’s past
experiences or when the team is inexperienced. More
technical issues may also play a role in padding for
contingency buffer since it may happen because there is a need
for integration with third-party software or the lack of
technology specialists.

Specific issues related to the estimator’s characteristics
may also cause the team leader to add padding to the internal
estimate, like when the estimator is inexperienced at the
company. Another reason is a known higher level of optimism
of the estimator, a known higher level of deliveries with errors
from the estimator, or when the estimator is insecure. P3 (team
leader) talks about it: “Nowadays, I know when a task is going
to return [with errors from the test] due to the experience I
have with the person [assigned to the task] – then we add more
padding. If the person is optimistic, we also pad.” More
generically, the team leader may pad for contingency buffer
simply to deal with unforeseen problems or raise the
confidence that the team will meet commitments. In any of
these cases, dealing with risks seems to be essential.

The second reason for padding is padding for completing
other tasks. It happens to gain time to implement a task that
estimators or team leaders could not add padding for. We
illustrate this case with Task A and Task C in Fig. 3. There
was a need for padding to ensure the complete implementation
of Task A, but the context did not allow for it. Therefore, the
decision was to estimate Task A to deliver a minimally viable
version of it and pad the Task C estimate to compensate. The
padding of Task C is meant to be used to finish the full version
of Task A instead of being used for Task C implementation.
P3 (team leader) talked about this: “We may use padding to
gain time for a task that we could not add padding (...) We

gave an estimate of 30 working days for functionality Y, but
we are counting on the padding of other tasks to finish it.”
Notice this reason to pad connects with the scenario where
there is no padding added to the estimate.

Padding for completing other tasks also happens when
estimators or team leaders use padding from one task to
implement tasks planned to, but not delivered in previous
projects/iterations. P10 (business/software analyst) gave an
illustrative example of this: “Sometimes, we have a contract
including functionalities A, B, C, and D, but we do not deliver
D, for instance. So, we will implement D in another project,
which includes other requirements, and we add padding for
D”. In this case, the need for completing is also there, but the
granularity is larger: the team needs to complete an entire
project instead of a single module or functionality.

The third reason is padding for improving the overall
quality of the product. It happens when team leaders use the
value of padding when there is a need for more robust testing
or to implement tests. It also happens when the team wishes to
implement improvements in the system, or simply to develop
carefully. Another motivation is to allow for the correction of
bugs in production, as we illustrate in Task D of Fig. 3.
Finally, padding for improving the overall quality may also
happen to evolve well-accepted features. In other words, the
estimator or the team leader can use the value added to the
internal estimate to ensure the fulfillment of the established
commitments with the customer, including overall quality
commitments. P3 (team leader) talked about it in the
interview: “It also happens that there are errors we know, and
we add one day in one task to correct it. For instance, we
delivered functionality T, but we were not able to test it. After
we delivered, the testers started to work, and they found lots
of bugs. Now we are correcting these bugs.”

On the one hand, it looks like team leaders use padding to
meet short-term commitments, either by not padding tasks
that, for instance, the client has high expectations or by
including padding in estimates of tasks at hand to deal with
risks. On the other hand, they also use padding to keep up
longer-term commitments, like when they compensate for the
lack of realism in some tasks through others’ padding. The
lack of time to dedicate to quality requirements in some tasks
is also compensated through other tasks’ padding, leveraging
the product's overall quality. Therefore, they make sure to
execute all tasks and satisfy all commitments in the long run.

Takeaway message 3: We found three reasons for padding
estimates: contingency buffer, completing other tasks, or
improving the overall quality. These different uses of padding
emerge from the estimation process to ensure both short and
long-term commitments can be met in the long run, even when
they are conflicting at a given moment of software development.

V. DISCUSSION

A. Getting defensible estimates

One of our core findings is that estimation sessions serve
to build defensible estimates, in addition to getting consensus
among the team members and their commitment to estimates,
as we presented in Section IV.A. This happens because team
leaders may not be willing to accept estimates they are not
convinced of. After all, they are the ones in contact with
customers and who will negotiate with them to establish
commitments based on these estimates. In response to this,

estimators may explicitly change their initial estimates to
more optimistic ones if their team leaders do not consider
them defensible. However, changing estimates to more
optimistic ones may lead to unrealistic estimates and errors.

The finding of the changes to estimates also aligns with
the ones from an interview study with large and mature
organizations, where Magazinius et al. report that estimators
may decrease estimates due to management pressure or may
change estimates to attain to organizational agenda, like due
to the interests of customers [34]. These results show that,
instead of standing up for their estimates and treating them as
non-negotiable facts, technical staff still need to learn skills to
convince their bosses of their estimates, as McConnell [35]
said they were years ago. Thereby, it is not enough to provide
estimators suitable methods for reaching consensus over an
estimate or for generating a realistic estimate: it must be
defensible.

Implications for practice: To avoid pressure over their
estimates, software professionals need to help their team leaders
and managers to build up arguments for defending estimates
during the establishment of commitments.

Implications for research: Our results indicate that estimators
change their estimates to more optimistic ones under pressure.
Therefore, we need practices that empower such estimators to
defend their estimates to keep them realistic.

B. Padding estimates to buy time

Another finding of our study concerns the padding
phenomenon that we explored in Sections IV.B and IV.C,
which involves adding a value to the original estimates before
their communication when defining a commitment. We found
industry scenarios in which padding is impossible, even if the
team feels it is needed. When padding is viable, our findings
indicate it is used to “buy” time for three reasons: for
contingency buffer, completing other tasks, or improving the
overall product quality.

Padding for contingency protects against risks in software
development, buying time to deal with them. The use of
contingency reserves for schedule and budget is already
known as a recommendation for project management in the
Project Management Body of Knowledge (PMBOK) [36], a
good risk management practice to fight against fires that may
impair a software project [5], and as a mechanism to
compensate for the winner`s curse [28]. Also, the inclusion of
a large buffer to deal with unexpected events or changes in
specifications is a reason for accurate estimates [37].
Additionally, Magazinius et al. report that project stakeholders
from industry sometimes intentionally increase their estimates
to avoid overspending software development resources [34].

Therefore, the use of padding for contingency buffer is
valid and vital for software tasks’ execution – and it has been
widely recognized in the software engineering literature.
However, our results indicate that software professionals use
padding for two additional reasons: completing other tasks
and improving the overall quality. For completing other tasks,
padding is added to one task to gain time to implement another
one that they could not add padding for. The last task’s
commitment is not realistic, and the padding of other tasks
counterbalances this fact. It also happens when a task was
planned to be delivered in a given project/iteration but is not.
Then, padding may be added to other projects/iterations to
include these tasks. In any of these cases, padding serves for
buying time for those other tasks.

Another reason to pad is for improving the overall product
quality by implementing improvements in the system,
amplifying tests, or allowing for the correction of bugs in
production. It is like buying time to attain to quality
requirements, satisfying long-run commitments. In alignment
with our findings of padding for completing other tasks and
improving the overall product quality, Magazinius et al. [34]
report that the most common reason for intentional increases
of estimates in their study was for hiding other activities in the
estimated ones. They state this happens either to get more
development time for one functionality or other testing or
maintenance activities [34].

In such cases, padding is a managerial mechanism to allow
for the repayment of technical debt in the software products.
Lim, Taksande, and Seaman [38] report that management may
not always recognize the importance of repaying technical
debt unless they are rewarded or the customer is willing to pay
for it. Additionally, customers may not be willing to give
software teams the time to repay technical debt unless they get
direct value from this [38]. Our findings indicate that in such
a scenario, using padding to implement tasks not delivered in
previous projects - padding for completing other tasks - is a
way to repay requirements debt. Also, padding for
implementing tests, implementing improvements in the
system, or allowing for the correction of bugs in production -
padding for improving the overall quality – is a mechanism to
repay design, coding, or testing debts. Therefore, while
researchers are focusing on more technical approaches for
repaying technical debt, like refactoring, rewriting,
automation, and others [39], industry professionals also have
to find managerial paths to allow for such repayments, like
padding their estimates.

Additionally, Becker, Walker, and McCord [40] mapped
studies about intertemporal choices – a concept of psychology
and behavioral economics referring to “decisions involving
tradeoffs among costs and benefits occurring in different
times” [41] – in software engineering. They found that no
empirical work investigated trade-offs in time in depth. Our
study contributes to filling in this gap, providing evidence
about how practitioners use padding – or the lack of it – to
balance short and long-term needs. Customers may have a
strong focus on shorter time to delivery and lower costs,
leading teams to sacrifice quality during software
development. Such an attitude reflects on the estimation
process, and the set of tasks at hand in a particular moment
receives much attention. In this context, padding is a
mechanism that team leaders and managers use for buying
time to deal with risks in software development, to
compensate for the lack of realism of previous tasks, or to
improve the overall quality of the product in the long run.

Along with our results, the findings from these other
studies indicate that padding is a relevant practice in the
industry’s estimating process, especially for protecting
software projects from risks and providing managerial
mechanisms for the repayment of technical debt. An
interesting remark is that one of the team managers asked the
researchers to present the research results regarding padding
to a novice team leader for training purposes, which indicates
their practical usefulness and relevance. It is time to recognize
padding as another tool in the software engineers’ toolbox to
deal with estimation’s social and human aspects.

Implications for practice: Padding is a relevant practice in the
software engineerings’ toolbox and goes beyond providing a
contingency buffer: it is also used to complete other tasks and
improve the overall quality of a product. Practitioners can use our
results to train novice team leaders on when and why to pad,
given the reasons we found.

Software teams can also classify their padding of tasks according
to the reasons to pad. Too many tasks with padding for
completing other tasks or improving overall quality suggest a
need for improving – or perhaps defending – estimates.

Implications for research: Padding hides the balancing of short
and long-term commitments from customers. Sometimes a task
is not padded to satisfy a short-term need – like delivering faster
– but another one is padded to compensate for the resulting lower
quality – like for correcting bugs left due to the absence of time
for testing correctly. A better comprehension of padding in the
software industry aids researchers in proposing alternative or
supplementary practices to padding to make the balance of short
and long-term commitments more transparent and controllable,
instead of just yielding to the pressure of short-term needs.

VI. LIMITATIONS

One of the limitations was that respondents might have
understood interview questions differently from what we
meant. To minimize this, we executed the observation
sessions before the interviews to ensure we would use
participants' terminology. By doing so, we also focused on
specific behaviors closely related to our research questions.

Also, there was the risk some topics were too sensitive for
participants to mention, as the changes of estimates and
padding behaviors. For instance, in the research about
distortions of software estimates, Magazinius et al. [34]
comment on how some of their respondents asked them to stop
audio recording in some parts of the interview to inform about
sensitive issues. Likewise, we were running the risk of having
our results biased by political reasons. We mitigated this risk
by being in constant contact with the team and executing
observation sessions for an extended period, making it
unlikely that sensitive behaviors would be covered. We
intended to promote an environment where participants could
speak freely about any subject, including sensitive topics.
Therefore, we did not audio record the observation sessions
and interviews, raising the risk for misunderstandings. We
showed a sample of our annotations to the participants of th
observation sessions to validate them, in order to minimize
this threat. After each interview session, we typed all the
annotations and emailed them to the interviewee, asking
him/her to read them and point inaccuracies. Additionally, we
presented our results to some participants to assess their
resonance — and we received positive feedback.

We first analyzed the data from one single company.
Therefore, it was hard to say our results generalize to other
contexts. We interviewed software professionals from other
companies located in other cities and working in different
business areas to address this. Despite the variation, all
companies embrace agile or hybrid development to some
extent. So, it may be the case that our results are especially
relevant for this context. In any case, our main concern was
with understanding a specific phenomenon over having
generalizable results.

Concerning reliability, all the researchers held meetings
for reaching a consensus during coding, ensuring that the

codes were meaningful, representing the quotations and that
the relationships between the codes were grounded on data.

VII. CONCLUSIONS

This paper presented a study in five companies to investigate
the interaction between software estimation and the
establishment of commitments with customers. In this sense,
our study contributes to untangling the underlying phenomena
of defensible estimates and padding, showing how the
practices software practitioners use in the field help them deal
with the human and social context in which estimation is
embedded. First, our results show that the interaction of
estimation and the establishment of commitments lead to
estimation sessions that focus on more than solely getting
consensus among team members and making estimators
committed to estimates. It also serves to build defensible
estimates. Given this, estimators may change their estimates
to more optimistic ones if there is a belief that they are not
defensible.

Second, padding is a valid mechanism in the industry, and
team leaders have different reasons to pad. They may use
padding for contingency buffer, completing other tasks or
improving the overall quality of the product. As a contingency
buffer, padding serves as a reserve to deal with risks during
software development and maintenance. For completing other
tasks, the padding of one task embeds the estimates of other
tasks for which padding was impossible. For improving
quality, padding compensates for previous deliveries where
time had higher priority over quality requirements.
Interestingly, padding for completing other tasks and for
improving quality are managerial paths that industry
practitioners have found to repay technical debt.

Future work on defensible estimates involves developing
mechanisms to provide software professionals the skills to
defend their estimates, as McConnell [35] suggested years
ago. Another possibility is proposing and investigating
mechanisms that help software teams help team leaders build
defensible estimates before the customer without sacrificing
realism. Regarding padding, future work includes the
proposing and investigating mechanisms to support
appropriate padding, given each of the different reasons it is
used for. Finally, software teams may benefit from
alternatives to padding to help them to balance short- and
long-term commitments in more transparent and controllable
ways.

ACKNOWLEDGMENT

This research, carried out within the scope of the Samsung-
UFAM Project for Education and Research (SUPER),
according to Article 48 of Decree no
6.008/2006(SUFRAMA), was funded by Samsung
Electronics of Amazonia Ltda., under the terms of Federal
Law no 8.387/1991, through agreement 001/2020, signed with
Federal University of Amazonas and FAEPI, Brazil and
through agreement no 003/2019 (PROPPGI), signed with

ICOMP/UFAM. Also supported by CAPES - Financing Code
001, CNPq processes 314174/2020-6 and 313067/2020-1, and
FAPEAM process 062.00150/2020. We also thank all the
study participants.

REFERENCES

[1] S. McConnell, Software Estimation: Demystifying the Black Art,
1st ed. Redomnd, Washington, USA: Microsoft Press, 2006.

[2] D. Fairley, “Making accurate estimates,” IEEE Software, vol. 19,
no. 6, pp. 61–63, Nov. 2002, doi: 10.1109/MS.2002.1049392.
[3] A. L. Lederer and J. Prasad, “Perceptual congruence and
information systems cost estimating,” in Proceedings of the 1995 ACM

SIGCPR conference on Supporting teams, groups, and learning inside and
outside the IS function reinventing IS, Nashville, Tennessee, USA, Apr.
1995, pp. 50–59, doi: 10.1145/212490.212504.
[4] M. Jørgensen, “Communication of Software Cost Estimates,” in
Proceedings of the 18th International Conference on Evaluation and

Assessment in Software Engineering, New York, NY, USA, 2014, p. 28:1-
28:5, doi: 10.1145/2601248.2601262.
[5] T. deMarco and T. Lister, Waltzing with bears - Managing risk

on software projects. Dorset House Publishing, 2003.
[6] R. E. Fairley and M. J. Willshire, “Why the vasa sank: 10
problems and some antidotes for software projects,” IEEE Softw., vol. 20,
no. 2, pp. 18–25, Mar. 2003, doi: 10.1109/MS.2003.1184161.
[7] M. Jørgensen and S. Grimstad, “The Impact of Irrelevant and
Misleading Information on Software Development Effort Estimates: A
Randomized Controlled Field Experiment,” IEEE Transactions on Software

Engineering, vol. 37, no. 5, pp. 695–707, Sep. 2011, doi:
10.1109/TSE.2010.78.
[8] M. Jørgensen, “The influence of selection bias on effort overruns
in software development projects,” Information and Software Technology,
vol. 55, no. 9, pp. 1640–1650, Sep. 2013, doi: 10.1016/j.infsof.2013.03.001.
[9] A. L. Lederer and J. Prasad, “The validation of a political model
of information systems development cost estimating,” ACM SIGCPR
Computer Personnel, vol. 13, no. 2, pp. 47–57, Aug. 1991, doi:
10.1145/122393.122398.
[10] M. Jorgensen and M. Shepperd, “A Systematic Review of
Software Development Cost Estimation Studies,” IEEE Transactions on

Software Engineering, vol. 33, no. 1, pp. 33–53, Jan. 2007, doi:
10.1109/TSE.2007.256943.
[11] V. Ivanov, A. Rogers, G. Succi, J. Yi, and V. Zorin, “What Do
Software Engineers Care About? Gaps Between Research and Practice,” in
Proceedings of the 2017 11th Joint Meeting on Foundations of Software

Engineering, New York, NY, USA, 2017, pp. 890–895, doi:
10.1145/3106237.3117778.
[12] K. Molokken and M. Jorgensen, “A review of software surveys
on software effort estimation,” in 2003 International Symposium on

Empirical Software Engineering, 2003. ISESE 2003. Proceedings., Sep.
2003, pp. 223–230, doi: 10.1109/ISESE.2003.1237981.
[13] A. Trendowicz, J. Münch, and R. Jeffery, “State of the Practice
in Software Effort Estimation: A Survey and Literature Review,” in Software
Engineering Techniques, 2011, pp. 232–245.
[14] D. T. Martínez C. Branco, E. C. Cunha de Oliveira, L. Galvão, R.
Prikladnicki, and T. Conte, “An Empirical Study About the Influence of
Project Manager Personality in Software Project Effort,” in Proceedings of

the 17th International Conference on Enterprise Information Systems -

Volume 2, Portugal, 2015, pp. 102–113, doi: 10.5220/0005373001020113.
[15] K. Moløkken and M. Jørgensen, “Expert Estimation of Web-
Development Projects: Are Software Professionals in Technical Roles More
Optimistic Than Those in Non-Technical Roles?,” Empirical Software
Engineering, vol. 10, no. 1, pp. 7–30, Jan. 2005, doi:
10.1023/B:EMSE.0000048321.46871.2e.
[16] M. Jørgensen, B. Faugli, and T. Gruschke, “Characteristics of
software engineers with optimistic predictions,” Journal of Systems and

Software, vol. 80, no. 9, pp. 1472–1482, Sep. 2007, doi:
10.1016/j.jss.2006.09.047.
[17] E. Løhre and M. Jørgensen, “Numerical anchors and their strong
effects on software development effort estimates,” Journal of Systems and

Software, vol. 116, pp. 49–56, Jun. 2016, doi: 10.1016/j.jss.2015.03.015.
[18] M. Jorgensen, “Realism in assessment of effort estimation
uncertainty: it matters how you ask,” IEEE Transactions on Software

Engineering, vol. 30, no. 4, pp. 209–217, Apr. 2004, doi:
10.1109/TSE.2004.1274041.
[19] M. Jørgensen and T. Halkjelsvik, “Sequence effects in the
estimation of software development effort,” Journal of Systems and
Software, vol. 159, p. 110448, Jan. 2020, doi: 10.1016/j.jss.2019.110448.
[20] S. K. Sehra, Y. S. Brar, N. Kaur, and S. S. Sehra, “Research
patterns and trends in software effort estimation,” Information and Software
Technology, vol. 91, pp. 1–21, Nov. 2017, doi: 10.1016/j.infsof.2017.06.002.
[21] M. Jorgensen, “Practical guidelines for expert-judgment-based
software effort estimation,” IEEE Software, vol. 22, no. 3, pp. 57–63, May
2005, doi: 10.1109/MS.2005.73.

[22] M. Jørgensen and D. I. K. Sjøberg, “The impact of customer
expectation on software development effort estimates,” International
Journal of Project Management, vol. 22, no. 4, pp. 317–325, May 2004, doi:
10.1016/S0263-7863(03)00085-1.
[23] A. L. Lederer and J. Prasad, “Causes of inaccurate software
development cost estimates,” Journal of Systems and Software, vol. 31, no.
2, pp. 125–134, Nov. 1995, doi: 10.1016/0164-1212(94)00092-2.
[24] S. Keaveney and K. Conboy, “Cost estimation in agile
development projects,” in ECIS 2006 Proceedings, p. 16.
[25] A. Zarour and S. Zein, “Software Development Estimation
Techniques in Industrial Contexts: An Exploratory Multiple Case-Study,”
International Journal of Technology in Education and Science, vol. 3, no. 2,
pp. 72–84, 2019.
[26] A. Magazinius and R. Feldt, “Exploring the human and
organizational aspects of software cost estimation,” in Proceedings of the

2010 ICSE Workshop on Cooperative and Human Aspects of Software

Engineering, New York, NY, USA, May 2010, pp. 92–95, doi:
10.1145/1833310.1833325.
[27] R. L. Glass, J. Rost, and M. S. Matook, “Lying on Software
Projects,” IEEE Software, vol. 25, no. 6, pp. 90–95, Nov. 2008, doi:
10.1109/MS.2008.150.
[28] T. Halkjelsvik and M. Jørgensen, “Overoptimistic Predictions,”
in Time Predictions: Understanding and Avoiding Unrealism in Project
Planning and Everyday Life, T. Halkjelsvik and M. Jørgensen, Eds. Cham:
Springer International Publishing, 2018, pp. 35–54.
[29] M. Jorgensen and S. Grimstad, “Over-optimism in software
development projects: ‘the winner’s curse,’” in 15th International

Conference on Electronics, Communications and Computers
(CONIELECOMP’05), Feb. 2005, pp. 280–285, doi:
10.1109/CONIEL.2005.58.
[30] P. Tell et al., “What are Hybrid Development Methods Made Of?
An Evidence-Based Characterization,” in 2019 IEEE/ACM International

Conference on Software and System Processes (ICSSP), May 2019, pp. 105–
114, doi: 10.1109/ICSSP.2019.00022.
[31] Z. Masood, R. Hoda, and K. Blincoe, “Real World Scrum A
Grounded Theory of Variations in Practice,” IEEE Transactions on Software

Engineering, pp. 1–1, 2020, doi: 10.1109/TSE.2020.3025317.
[32] M. Usman, E. Mendes, and J. Börstler, “Effort estimation in agile
software development: a survey on the state of the practice,” in Proceedings

of the 19th International Conference on Evaluation and Assessment in
Software Engineering, Nanjing, China, 2015, pp. 1–10, doi:
10.1145/2745802.2745813.
[33] J. Corbin and A. Strauss, Basics of qualitative research -
Techniques and procedures for developing grounded theory, 4th ed. Sage
Publications, 2014.
[34] A. Magazinius, S. Börjesson, and R. Feldt, “Investigating
intentional distortions in software cost estimation – An exploratory study,”
Journal of Systems and Software, vol. 85, no. 8, pp. 1770–1781, Aug. 2012,
doi: 10.1016/j.jss.2012.03.026.
[35] S. McConnell, “How to defend an unpopular schedule [software
development projects],” IEEE Software, vol. 13, no. 3, pp. 120–119, May
1996, doi: 10.1109/52.493033.
[36] A Guide to the Project Management Body of Knowledge

(PMBOK Guide), 6th ed. Newtown Square, PA: Project Management
Institute, 2017.
[37] M. Jorgensen and K. Molokken-Ostvold, “Reasons for software
effort estimation error: impact of respondent role, information collection
approach, and data analysis method,” IEEE Transactions on Software
Engineering, vol. 30, no. 12, pp. 993–1007, Dec. 2004, doi:
10.1109/TSE.2004.103.
[38] E. Lim, N. Taksande, and C. Seaman, “A Balancing Act: What
Software Practitioners Have to Say about Technical Debt,” IEEE Software,
vol. 29, no. 6, pp. 22–27, Nov. 2012, doi: 10.1109/MS.2012.130.
[39] Z. Li, P. Avgeriou, and P. Liang, “A systematic mapping study
on technical debt and its management,” J. Syst. Softw., vol. 101, no. C, pp.
193–220, Mar. 2015, doi: 10.1016/j.jss.2014.12.027.
[40] C. Becker, D. Walker, and C. McCord, “Intertemporal Choice:
Decision Making and Time in Software Engineering,” in 2017 IEEE/ACM

10th International Workshop on Cooperative and Human Aspects of

Software Engineering (CHASE), May 2017, pp. 23–29, doi:
10.1109/CHASE.2017.6.
[41] S. Frederick, G. Loewenstein, and T. O’Donoghue, “Time
Discounting and Time Preference: A Critical Review,” Journal of Economic
Literature, vol. 40, no. 2, pp. 351–401, 2002.

