
Strategies for Crowdworkers to Overcome Barriers in

Competition-based Software Crowdsourcing Development

Alexandre Zanatta

University of Passo
Fundo (UPF)

Passo Fundo, Brazil
zanatta@upf.br

Leticia Machado

Federal University of
Pará (UFPA)

Belém, Brazil
leticia.smachado@gmail.com

Igor
Steinmacher

Northern Arizona
University (NAU)
Flagstaff AZ, USA

igor.steinmacher@nau.edu

Rafael Prikladnicki
Pontifical Catholic
University of Rio

Grande do Sul
(PUCRS) Porto Alegre,

Brazil

rafael.prikladnicki@pucrs.br

Cleidson R. B.
de Souza

Federal University of
Pará (UFPA)

Belém, Brazil
cleidson.desouza@acm.org

ABSTRACT

Crowdsourcing in software development uses a large pool of

developers on-demand to outsource parts or the entire software

project to a crowd. To succeed, this requires a continuous influx

of developers, or simply crowdworkers. However, crowdworkers

face many barriers when attempting to participate in software

crowdsourcing. Often, these barriers lead to a low number and

poor quality of submitted solutions. In our previous work, we

identified several barriers faced by crowdworkers including

finding a task according to his/her abilities, setting up the

environment to perform the task, and managing one’s personal

time. We also proposed six strategies to overcome or minimize

these barriers. In this paper, these six strategies are evaluated

questioning Software Crowdsourcing (SW CS) experts. The

results show that software crowdsourcing needs to: (i) provide a

system that helps matching tasks requirements and

crowdworker’s profile; (ii) adopt containers or virtual machines

to help crowdworkers set up their environment to perform the

task, (iii) plan and control crowdworkers’ personal time, and (iv)

adopt communication channels to allow crowdworkers to clarify

questions about the requirements and, as a consequence, finish the

tasks.

CCS CONCEPTS

•Software and its engineering •Collab. in software development

KEYWORDS

Software crowdsourcing, barriers, strategies

ACM Reference format:

Alexandre Zanatta, Leticia Machado, Igor Steinmacher, Rafael

Prikladnicki, Cleidson R. B. de Souza. Strategies for Crowdworkers to

Overcome Barriers in Competition-based Software Crowdsourcing

Development In Proceedings 13th International Workshop on

Cooperative and Human Aspects of Software Engineering, Seoul, South

Korea. ACM, New York, NY, USA, 4 pages.

1. Introduction

Software crowdsourcing development (SW CS) depends on a

large pool of potential developers on-demand to outsource parts

or the entire software project to a crowd [1]. In general, given the

characteristics of SW CS projects, tasks represent the starting

point of this model. A task is the work unit made available on a

crowdsourcing software platform that represents the clients' needs

or problems. In competitive SW CS a client requests a task and

pays for its completion [2].

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full

citation on the first page. Copyrights for components of this work owned by others

than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from Permissions@acm.org.

ICSEW'20, May 23–29, 2020, Seoul, Republic of Korea

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7963-2/20/05…$15.00

https://doi.org/10.1145/3387940.3392243

 Hosseini et al. [3] comment that crowdworkers are the key

actors in crowdsourcing, however, if crowdworkers dropout or

become inactive, this model can collapse [1]. In a previous work,

Zanatta et al. [4] identified eight main barriers faced by a group

of onboarding crowdworkers while attempting to contribute

(submit tasks) in the competition-based software crowdsourcing

platform Topcoder. We also identified potential solutions to

overcome such barriers based on a literature review and, on

crowdworkers’ suggestions [4], [5], [6]. Table 1 lists these

strategies.

Table 1: Strategies to support crowdworkers

Strategies LR C

S1

Providing a system that helps matching

tasks requirements and crowdworkers’

profile.

X X

S2
Decomposing complex tasks into

smaller tasks (micro-tasks).
X -

S3

Using a container or virtual machine to

help set up the environment to perform

the task.

X X

S4
Planning and controlling

crowdworkers’ personal time.
X -

S5

Using communication channels (chats

or forums) to collaborate to understand

and perform the task.
X X

S6

Using auto-translation mechanisms

(machine translation) to maximize the

comprehension of the task and

communication

X -

Legend: LR – Recommendation from Literature Review

C – Recommendation from participants of case studies.

 The contribution of this paper is an evaluation of these

strategies that was achieved by asking software crowdsourcing

experts. In summary, our research question is: “How do

crowdsourcing experts perceive the suggested strategies to

support crowdworkers overcoming the onboarding barriers in

competitive software crowdsourcing?”

2. Research settings

For data collection, we designed a web-based questionnaire to be

distributed to SW CS experts. This survey was validated using the

Collingridge method [7]. First, we evaluated our questions using

a group familiar with SW CS and we reviewed using an expert on

questionnaire construction. In the end, our survey contained

approximately 25 open-ended and closed-ended questions divided

into 2 sections. The first section contained questions about our

strategies on how to minimize the barriers, while the second

section asked information about the participants.

 Second, we ran a pilot test on a subset of 3 SW CS experts to

improve the questionnaire. Third, we collected and cleaned the

data. The questionnaire was sent to 91 experts in SW CS. We

considered expert practitioners and researchers in crowdsourcing

who were members of the program committee of a specialized

event called “Workshop on Crowdsourcing in Software

Engineering (CSI-SE).” We also invited the authors who had

papers published in CSI-SE between 2014 and 2018. After three

months, we received answers from 141 respondents, a 15.4%

response rate. This study was performed between January and

April 2018. In all phases, all participants voluntarily agreed to join

the study. The complete survey is available at

https://goo.gl/forms/Ys2HomFkT56oItW03. We analyzed the

data guided by the procedures and techniques of qualitative

research.

3. Results

To preserve experts’ identity, we assigned an ID to the

participants. Most of the software crowdsourcing experts (85%)

had between two and five years of experience in software

crowdsourcing.

 When asked to provide their perceptions about Strategy 1 (S1

on Table 1), four participants reported that inappropriate task-

worker matching might harm the quality of the submissions. Their

answers are presented below:

P1: “Tools or systems are welcomed to reduce the

overhead of selecting tasks.”

P6: “Finding appropriate tasks certainly seems

important”

P10: “Matching task with expertise is an important part

of a crowdsourcing platform.”

P13: “Some support for crowdworkers in finding suitable

tasks is very useful. But I only selected "3" at this question

because I think such task selection/ recommendation

should be part of crowdsourcing systems be default

rather.”

 P14 believes that the crowdsourcing platform should facilitate

crowdworkers finding a task to start with, i.e., this should be

something already embedded in these platforms instead of a

“new” feature. Another participant made a parallel between this

strategy and the fact that students rate learning as an important

motivation for joining in Open Source Software (OSS).

P14: “In Open Source projects, newcomers who search

for tasks (instead of approaching the project with a task

at hand already) are often students. Students also rate

learning as an important motivation for joining. Thus, the

recommendation sounds very reasonable.”

 When asked to provide their perception about Strategy 2 (S2)

four participants agreed that decomposing a task was a good

strategy but they commented that this can be very difficult to do.

P1: “That's what we do in a software engineering

capstone course where I participated. We encourage

students to take fine-grained tasks.”

P6: “I generally would agree, but it can be really difficult

to break down tasks. Depends on the context I guess.”

P10: “Decomposing too much would not be good for

quality control. A task should take half a day to one week

to complete ideally with a relatively independent chunk of

work.”

1 There is no consensus in the literature about the size of the sample in qualitative analysis it depends on the research project and the theoretical and
conceptual saturation observed by the researcher. “Thus, to end this Introduction as we began, the answer to ‘How many qualitative interviews is enough’
is ‘it depends’”. Flick, Uwe in Baker, S. E. e Edwards, R How many qualitative interviews is enough. (2012) http://eprints.ncrm.ac.uk/2273/4,

P11: “I agree that it is up to the requesters to ensure

clarity of the task requirements.”

 In conclusion, SW CS experts comment that the platform

facilitated them decomposing a task to start with. However, at the

same time 2 participants (P6 and P10) mention that this

decomposition process might be challenging.

 When we asked the participants to provide their perception

about Strategy 3 (S3), P1 commented:

“I agree with the use of virtual machines or docker

containers to overcome the barrier ‘It's hard to configure

the necessary environment to perform the task.’”

 Some participants mentioned that crowdworkers should use

IDEs under the concept of cloud computing to execute the tasks,

i.e., these technologies help the preparation of the environment to

perform the task. Note that this implies in additional work for the

tasks requester who is the one who has to prepare this

environment to be shared with the crowd members.

 When asked to provide their perception about Strategy 4 (S4)

P1 reported that there are some tasks in which it is difficult to

evaluate and manage the time required to learn and execute them:

P1: “There are tasks in which it is very difficult to be very

specific when defining hours or timelines.”

Still, P7 reported that it is necessary to define how much effort or

time is required to execute the task, but it depends on the size of

the task and the skill of the crowdworkers.

P7: “…at least some effort estimation should be provided.

If there is a set of smaller tasks, an overall timeline as

well as timelines for smaller pieces could be provided.”

 Furthermore, P5 mentioned that once the task has been

divided into small activities, the next step is to determine the

activity duration: how long it will take to accomplish from

beginning to finish. The crowdworker can perform a basic

analysis to estimate the duration of an activity:

P5: “I believe that for highly specialized tasks such as

software development, the crowd is required to have a

certain degree of expertise, which means they're in a

better position than the requester (mostly) to define how

much effort / time is required, pretty much like software

engineers give estimates to their tasks to management in

a work environment.”

 In summary, crowdworkers do need previous technical

knowledge to be able to estimate the time required to finish a task.

Meanwhile, crowdsourcing platforms need to provide an initial

estimated time for tasks. This will allow crowdworkers to better

manage their time and successfully deliver a task considering that

participants use their free time to solve the tasks.

 When asked to provide their perception about Strategy 5 (S5)

the experts suggested the crowdsourcing platforms must provide

(or indicate) support for collaboration mechanisms through

communication channels among crowd members.

P1: “Kanban boards or slack channels would be a good

example [of communication channels].”

P10: “Platform should support some async/sync

collaboration channels.”

P11: “This shouldn't be necessary...there are tools like

Slack that can be used both synchronously and

asynchronously.”

https://goo.gl/forms/Ys2HomFkT56oItW03
http://eprints.ncrm.ac.uk/2273/4

P12: “But the recommendation should suggest what

channels and what frequency.”

 Two other participants (P7, P8) commented that it depends on

the type of task; the crowdworker should use different channels to

communicate synchronously or asynchronously.

P7: “This might also depend on the type of task, if there

are isolated tasks which might not need any

collaboration, others might exist where discussion is

needed (e.g., team meetings, or knowledge exchange).”

P8: “Depends on the type of Crowdsourced platform and

level of the issue raising, I agree that there is a need for

different communication channel.”

 Only two participants related that they do not agree with the

need for a platform with more communication features. Their

answers are presented below:

P5: “Wouldn't it defeat the purpose of crowdsourcing?

How would you manage communication of hundreds or

thousands of workers? I believe a pure microtask

crowdsourced project should keep a minimum of

communication and rely on basic voting/score systems for

certain decisions. Obviously, this is a personal opinion

and it would require further research to evaluate the

viability of this approach.”

P13: “I assume it is meant that in *competitive

crowdsourcing*, workers within a group should

collaborate (but they do not really need to collaborate

with workers outside the group). Additionally, if a project

requires much collaboration between workers, then

probably the division in micro-tasks was not optimally

performed (as it should have resulted in micro-tasks that

can be solved independently of each other).”

 In summary, most of the experts think it is fundamental that the

SW CS platforms support async/sync collaboration tools to guide

and help crowdworkers. However, this is not without challenges.

For instance, P12 believes that is important to suggest the

frequency and the communication channels to be used.

Meanwhile, P7, P8, and P9 argue that this is possible depending

on the tasks and how they were decomposed (see Strategy S2).

Finally, two participants do not even agree with this strategy.

 When asked to provide their perception about Strategy 6 (S6)

one participant commented:

P1: “I think it is a good solution (Google translation

integration).”

 Three participants mentioned that using machine translation

can be used such as “a starting point”, but that is not a replacement

for true understanding of the task.

P9: “I cannot answer this question generally. English is

not my native language, yet, I feel confident enough to

understand tasks described to me in English, so I wouldn't

use auto-translation. Others might need some form of

translation. Auto-translation is one option, but certainly

not optimal, since it's prone to make mistakes, especially

with respect to jargon. In any case, auto-translation is an

assistance at best, not a solution to the language

barrier.”

P11: “Machine translation can be a starting point, but is

not a substitute for true understanding of task and

program requirements.”

P13: “At first this is a good idea, but auto-translation

might misinform the worker, especially because

translation learned from general language (web) corpora

will not work very well on specialized texts such as those

within a software project. Therefore, I am not that

convinced about this recommendation. At the same time,

I would not know what else to propose.”

 In addition, P6, P8, and P10 argued that automatic translation

could introduce mistakes and crowdworkers must understand the

original language of the task.

P6: “I think there's a risk here if the translation

introduces mistakes … have to be careful with this one.

P8: Readability is a very important factor that machine

cannot help in translation.”

P10: “Machine translation of tasks will introduce a lot of

incorrect wording. Ideally, worker should understand the

original language of the task.”

 English is a universal technical language for SCD projects and

crowdworkers must be able to speak the same language for large

communities in order to have effective communication and

learning. Therefore, crowdworkers need to have enough

competence in the English language to express or understand a

non-native language to understand the tasks. Meanwhile, another

expert suggested having a platform in a different language:

P5: “Why not just localizing the microtask platform?

Besides, as the worker is required to have certain skills to

perform the task, IMO certain languages should be

required as well.”

4. Discussion

In contrast to distributed development which typically involves

developers from the same organization in a more collaborative

way, SW CS generally operates on a structure of competitions,

projects are transitory or short-lived, unstable and undefined

virtual workers. The SW CS nature has a big impact on different

parts of a software developer’s work including managing time,

decomposing and documenting tasks, dealing with cultural and

language differences, coordinating and communicating with a

diverse and virtual team.

 Regarding SW CS nature we divide our strategies into two

categories: Technical Strategies (TS) represent overall

recommendations relating to using nonspecific technologies and,

Personal Strategies (PS) refers to using strategies that will meet

crowdworkers individual needs within SW CS context.

4.1. Technical Strategies

The SW CS model taps global talents to work on software

development, but it also increases the complexity when one needs

to decide which development tasks are more suitable to be

crowdsourced as well as setting and orchestrating undefined

virtual workers.

 Providing a system that helps matching tasks requirements and

crowdworkers’ profiles can be used to find a task according to

crowdworkers’ expertise. Dustdar et al. [8] present a tool that

helps project managers to delegate the tasks to the crowd

according to their profile, which can contribute to the

understanding of the task by the crowdworker.

 Fershtman and Gneezy [9] report that decomposing a task into

smaller tasks (micro-tasks) must find a balance between providing

sufficient specification and maintaining the details necessary for

its understanding. Horton and Chilton [10] state that a reduced

global vision of the projects is an intricated source of

misunderstandings in traditional software development. SW CS

should take into this account since it is regarded as more complex

than traditional software development due to its unique

characteristics: limited communication, extreme distributed

development, high diversity and heterogeneous infrastructure [1].

 Projects that can be broken into small modules with clear

requisites and limited interdependencies are keener to have

success. However, Machado et al. [11] and Vaz et al. [12]

reported the crowd’s misconceptions about the task’s

documentation leading to a low number of submitted solutions

during competitive SW CS projects. According to Stol et al. [1]

to break the project into small modules, one needs to have “clear”

requisites, therefore to limit the dependency of tasks can define

the success of the project.

 Using a container or virtual machine to help set up the

development environment for a task can help crowdworkers to

engage in the tasks, since preparing the environment to implement

the task can demand a high effort by the crowd [5]. This means

the crowdsourcing platform should indicate a collaborative

environment or repository to maximize crowdworkers’

performance. Bari et al. [13] mentioned that crowdsourcing

platforms should support setting up the environment during the

task by the crowd. It should be noted that preparing a

computational structure, with specific software and hardware

among other aspects, is also a problem for the execution of OSS

projects [14].

4.2. Personal Strategies

We speculate that online workers in SW CS suffer from the same

limitations about planning and controlling personal time than in

traditional software projects. In addition, both groups need to

communicate and collaborate to perform the tasks.

 Crowdworkers’ personal time management can be

fundamental to execute the task and a crucial issue to coordinate

tasks vs. effort includes processes to understand, exchange

information, prepare the environment, execute, and finish the

task. Time management refers to the worker's ability to include

processes to manage the timely completion of the task available

in the platform. Park and Jensen [15] mentioned that users spend

a significant amount of time learning about a project before

effectively taking part in it. Machado et al. [11] reported a study

where the participants stated that there was little collaboration

among the members before, during and after the execution of the

task. Besides that, the communication channels (usually online

forums) can extend task documentation to provide technical help

to crowdworkers during the competitions. This is necessary

because crowdworkers need efficient collaboration mechanisms

to create a shared vision about the goal, restrictions and

acceptance criteria from projects.

 Panichella et al. [16] comment that communication between

the crowd and the clients is fundamental for SW CS mainly to

answer the crowd's questions.

 English skills for non-native crowdworkers are a

communication problem and an important barrier to tasks

performed on competitive crowdsourcing. Steinmacher et al. [14]

shows that expressing oneself in or understanding a non-native

language affects negatively the collaboration among

crowdworkers while performing their tasks. As indicated in our

results, a possible solution should be using auto-translation

mechanisms to facilitate the comprehension of the task and the

communication with other crowdworkers [4].

5. Conclusions

In this paper, we presented the evaluation of six strategies aimed

to support crowdworkers in overcoming the onboarding barriers

that they face in software crowdsourcing platforms. We have

limitations and topics that remain for future work. One limitation

is that our study focused only on Topcoder platform. In future

work, we plan to build a tool that might help matching tasks

requirements crowdworker profile.

ACKNOWLEDGMENTS

The authors thanks software engineering experts who participated in

the studies, and thanks UPF and PUCRS for supporting this work.

This project is partially funded by FAPERGS (project 17/2551-

0001/205-4), CNPq (Grants 430642/2016-4, 420801/2016-2 and

311256/2018-0); and FAPESP (Grant #2015/24527-3).

REFERENCES

[1] K. Stol and B. Fitzgerald, "Two’s company, three’s a crowd: a case study

of crowdsourcing software development," in 36th International

Conference on Software Engineering, 2014.

[2] Y. Yang, M. R. Karim, R. Saremi and G. Ruhe, "Who Should Take This

Task?: Dynamic Decision Support for Crowd Workers," in 10th

International Symposium on Empirical Software Engineering and

Measurement, 2016.

[3] M. Hosseini, K. Phalp, J. Taylor and A. Raian, "The four pillars of

crowdsourcing: A reference model," in 8th International Conference on

Research Challenges in Information Science, 2014.

[4] A. L. Zanatta, I. Steinmacher, L. Machado, C. R. d. Souza and R.

Prikladnicki, "Barriers Faced by Newcomers in Software Crowdsourcing

Projects," IEEE Software, vol. 34, no. 2, pp. 37-43, Mar 2017.

[5] A. L. Zanatta, L. S. Machado and I. Steinmacher, "Competence,

Collaboration and Time Management: Barriers and Recommendations for

crowdworkers," in 5th International Workshop on Crowd Sourcing in

Software Engineering, Gotemburgo, 2018.

[6] L. S. Machado, A. L. Zanatta, S. Marczak and R. Prikladnicki, " The

Good, the Bad and the Ugly: An Onboard Journey in Software

Crowdsourcing Competitive Model," in 4th International Workshop on

Crowd Sourcing in Software Engineering, Buenos Aires, 2017.

[7] D. S. Collingridge and E. E. Gantt, "The quality of qualitative research,"

American journal of medical quality, vol. 23, no. 5, pp. 389-395, 2008.

[8] S. Dustdar and M. Gaedke, "The social routing principle," Internet

Computing, vol. 15, no. 4, pp. 80-83, Jul 2011.

[9] C. Fershtman and U. Gneezy, "The tradeoff between performance and

quitting in high power tournaments," Journal of the European Economic

Association, vol. 9, no. 2, pp. 318-336, Abr 2011.

[10] J. J. Horton and L. B. Chilton, "The labor economics of paid

crowdsourcing," in 11th ACM Conference on Electronic Commerce,

2010.

[11] L. Machado, J. Kroll, R. Prikladnicki, C. R. de Souza and E. Carmel,

"Software crowdsourcing challenges in the Brazilian IT Industry," in 18th

International Conference on Enterprise Information Systems, Rome,

2016.

[12] L. Vaz, I. Steinmacher and S. Marczak, "An Empirical Study on Task

Documentation in Software Crowdsourcing on TopCoder," ACM/IEEE

14th International Conference on Global Software Engineering, pp. 48-

57, May 2019.

[13] E. Bari, M. Johnston, W. Wu and W. T. Tsai, "Software Crowdsourcing

Practices and Research Directions," in Service-Oriented System

Engineering , 2016.

[14] I. Steinmacher, M. A. G. Silva, M. A. Gerosa and D. F. Redmiles, "A

systematic literature review on the barriers faced by newcomers to open

source software projects," Information and Software Technology, vol. 59,

no. C, pp. 67-85, Mar 2015.

[15] Y. Park and C. Jensen, "Beyond pretty pictures: Examining the benefits

of code visualization for open source newcomers," in 5th IEEE

International Workshop Visualizing Software for Understanding and

Analysis, 2009.

[16] S. Panichella, G. Bavota, M. D. Penta, G. Canfora and G. Antoniol, "How

developers’ collaborations identified from different sources tell us about

code changes," in IEEE international Conference on Software

Maintenance and Evolution, 2014.

