
An Empirical Study on Task Documentation in
Software Crowdsourcing on TopCoder
Luis Vaz

MunDDos Research Group
School of Technology

PUCRS, Brazil
luis.vaz@acad.pucrs.br

Igor Steinmacher
School of Informatics, Computing,

and Cyber Systems
Northern Arizona University, USA

igor.steinmacher@nau.edu

Sabrina Marczak
MunDDos Research Group

School of Technology
PUCRS, Brazil

sabrina.marczak@pucrs.br

Abstract—In the Software Crowdsourcingcompetitive model,
crowd members seek for tasks in a platform and submit their
solutions seeking rewards. In this model, the task description
is important to support the choice and the execution of a task.
Despite its importance, little is known about the role of task
description as support for these processes. To fill this gap, this
paper presents a study that explores the role of documentation on
TopCoder platform, focusing on the task selection and execution.
We conducted a two-phased study with professionals that had
no prior contact with TopCoder. Based on data collected with
questionnaires, diaries, and a retrospective session, we could
understand how people choose and perform the tasks, and the
role of documentation in the platform. We could find that poorly
specified or incomplete tasks lead developers to look for supple-
mentary material or invest more time and effort than initially
estimated. To better support the crowd members, we proposed
a model on how to structure the documentation that composes
the task description in competitive software crowdsourcing. We
evaluated the model with another set of professionals, again
relying on questionnaires, reports, and a retrospective session.
Results showed that although the documentation available cov-
ered the elements of the proposed model, the participants had
issues to find the necessary information, suggesting the need for
a reorganization. Participants agreed that the proposed model
would help them understand the task description. Therefore, our
study provides a better understanding of the importance of task
documentation in software crowdsourcing and points out what
information is important to the crowd.

Index Terms—Software crowdsourcing, Task documentation,
TopCoder, Empirical study

I. INTRODUCTION

Software Crowdsourcing, defined as the act of outsourcing
software development to an undefined and large group of
people—the crowd—through an open call, is a phenomenon
that has been gaining attention [1], [2]. Crowdsourcing is
mediated by a platform and is based on tasks that are executed
by the crowd. The tasks can be distributed on-demand follow-
ing a recruitment model performed by the platform based on
the analysis of crowd members’ profiles; or in a competitive
model, in which the members register themselves for tasks and
submit a solution aiming to receive a reward (e.g., financial).

In the competitive model, the crowd members can choose
the tasks they will work on according to their own interest. For
instance, they can filter the tasks according to the programming
language, application domain, or simply because they feel

challenged by the task description. Thus, in this context,
the description (or documentation) of the task presented by
the platform becomes an important factor for the crowd
members—who rely on it to choose and execute the tasks—
and for the clients—who aim to receive complete and correct
solutions to their problems. However, little is known about
how the documentation influences the selection of the tasks
and their subsequent development in the crowdsourcing model.
Seeking to contribute to filling this gap in the literature, this
paper presents an empirical study aiming to understand the
role of documentation in the selection and development of
tasks in software crowdsourcing.

To conduct this study, we focused on the TopCoder plat-
form [3], which implements the competitive model. We con-
ducted a two-phased research. In Phase 1 we conducted a
case study with professionals attending to a graduate course
on Collaborative Software Development. The participants re-
ceived an assignment that consisted of selecting, developing,
and submitting two tasks available on TopCoder. The data
collection was carried out through questionnaires, diaries,
and a retrospective session. The results of Phase 1 showed
that the quality of the task documentation, in particular its
general description, influences the selection of the task by the
members of the crowd. Tasks that do not present clear and
objective description—without technology requirements, or
environment setup instructions—demotivate developers, lead-
ing them to abandon the task’s solution attempt. By analyzing
the challenges and suggestions reported by the participants, we
proposed a way to structure the information that composes the
task description in competitive software crowdsourcing.

The goal of Phase 2 was to evaluate the structure we
proposed in Phase 1, in addition to gain more insights. To this
end, we conducted another case study with professionals of
a second session of the same course. We worked again with
an assignment in which the 10 professionals had to choose
and submit a solution to a task in TopCoder. At this time, we
surveyed them about the challenges with documentation. We
also asked them to write a report about their experience and
conducted a retrospective session as means to triangulate data.
The results of Phase 2 indicate that although the information
available in the tasks covered the elements of our proposed
model, the participants had issues to find the information,



Fig. 1. Crowdsourcing model components.

suggesting the need for a reorganization. Also, most of the
participants agreed that the proposed structure would help
them identify and better understand different aspects of the
task, reinforcing the need for improvement.

Our results provide a better understanding of the importance
of task documentation in software crowdsourcing and identify
a set of information that may be provided to improve the
experience of crowd members. Thus, this paper contributes
as follows: (i) listing the factors that influence the task choice
and development; (ii) listing the quality characteristics of the
task documentation that are relevant to support the process of
task choice and development; (iii) proposing a structured way
to present the information when documenting crowdsourcing
tasks; and (iv) evaluating how the description provided cur-
rently adhere to the proposed structured model and how the
structure would benefit the users.

II. BACKGROUND

Howe [4] explains that the crowdsourcing phenomenon has
its origins in the Open Source Software movement, evidencing
that a motivated group with a common goal is able to create a
high-quality product. It involves outsourcing an activity so that
a client reaches its business goals by leveraging a third-party
entity capable of solving a particular problem [4].

With a similar idea behind it, Software Crowdsourcing is
specialized in software development activities, and involves
the client, who proposes the task; the crowd, composed of
professionals willing to perform tasks; and the platform, which
mediates the relationship between the other two elements [2],
[5]. Among these elements is the task, which represents the
activities proposed by the client, as illustrated in Figure 1. The
tasks are decomposed and managed by the platform, being
carried out by the crowd [6].

A. Tasks in Software Crowdsourcing

A task in software crowdsourcing can represent a high
complexity problem to be solved in the long term, in several
steps—called Challenges; can propose an innovation model;
or can propose software development activities, such as the
graphic design of an interface or the coding of a specifica-
tion [2], in the form of Competitions. The task can also take
on different formats: high-level description, leaving the crowd
member free to define how to develop the solution; a detailed
description with technical documents (e.g., UML models); or a

Fig. 2. Representation of task decomposition [7].

set of technical specifications followed by detailed instructions
on how to organize and submit the solution.

The task represents the problem or part of the problem
defined by the client and is generally defined by the platform.
This process of definition and decomposition into micro-
tasks, illustrated in Figure 2, is considered one of the major
challenges of this development model [7]. This decomposition
process needs to safeguard that the tasks made available on
the platform do not lose their characteristics and their interde-
pendence with the other parties that represent the problem [7].

When fragmenting the task into micro-tasks, the platform
needs to ensure that each micro-task has sufficient information
to enable its development. The resulting task documentation
cannot be too specific that loses focus nor too broad that
challenges its comprehension. Tasks decomposition turns out
to be a crucial factor for the tasks solution given that the
quality of the resulting documentation is likely to affect the
crowd members’ performance [7].

B. TopCoder Platform

Some crowdsourcing platforms are specialized in a certain
software activity, like uTest1 and TestBirds2, which focus on
testing; and others provide support the the entire development
cycle, such as GetACoder3 and TopCoder4. The latter stands
out among the commercial platforms as the pioneer and for
having thousands of active members [8].

TopCoder was created in 2001 when its founder, Jack
Hughes, proposed an innovative way of dealing with chal-
lenges in recruiting talents and high turnover of profession-
als [3]. Hughes aimed to reduce the costs and effort of his
customers by reusing software components instead of building
a complete system from scratch. Thus, TopCoder defines
a model that prioritizes the reuse of components to solve
customer problems and, when necessary, crowdsourced tasks
to get solutions for the development of new components. As a
way to enable this strategy, the platform becomes a mechanism
to attract new members and form a community of skilled
programmers—the Top Coders—willing to compete to build
the best solution.

In this model, a task must follow a specific flow from
creating the announcement, selection, completion, delivery,
and validation [2]. Tasks in the Competition category are

1URL: https://www.utest.com/
2URL:https://www.testbirds.com/
3URL:http://www.getacoder.com
4URL:https://www.topcoder.com/



Fig. 3. Current model of the documentation structure of a task in TopCoder.

presented to the crowd by means of a short general description,
open to all users, and a detailed description associated (or
not) to supplementary documentation (e.g., models, prototype
screens), restricted to those who subscribe to the task compe-
tition. Figure 3 illustrates the typical structure of a general
task description, consisting of: (i) task header (e.g., name,
deadlines, prize value); (ii) fixed information highlighted by
black icons; and (iii) complementary information (which may
vary), represented by blue icons.

III. RESEARCH CONTEXT

As mentioned, to explore the role of documentation during
task selection and development in software crowdsourcing, we
carried out a study using TopCoder. TopCoder was chosen
because it is currently the largest software crowdsourcing
platform, with more than one million registered developers,
and covers different software development activities [8].

The research was conducted in two phases, as depicted in
Figure 4. Phase 1 consisted of a case study with 20 profes-
sionals attending to a graduate course, as a course assignment
in which the participants had to select tasks and develop a
solution for them. We made use of diaries, questionnaires, and
a retrospective session with the participants to collect data.

The outcomes of Phase 1 include the role and quality of the
documentation in task selection and execution; and a proposed
structure to organize the documentation.

For Phase 2, a second case study was conducted with the
aim to preliminarily evaluate the structure proposed during
Phase 1. The study was conducted with 10 professionals who
attended yet another session, a year later, of the same graduate
course. Similarly to Phase 1, the participants contributed to
TopCoder, submitting a solution to a chosen task. We collected
data by means of a survey at the end of the course, asking them
to evaluate how the description of the tasks they chose adhere
to the proposed structure, and how they perceive the items of

Role and quality of
documentation

Proposed
documentation
structure model

Phase 2 - Evaluating the Proposed Structure Model

Phase 1 - Evaluating the Task Documentation

Diaries

Retrospective
session

Questionnaires

Contribution to
Topcoder

Qualitative Analysis

Survey +
Experience

Report

Contribution to
Topcoder

Retrospective
session

Qualitative
Analysis

Fig. 4. Research design

the proposed structure. Additionally, we asked the participants
to write a report on their TopCoder experience and conducted
a retrospective session to triangulate data.

To facilitate the reading, the details about the research
method for each phase are presented next to the results of
each of the steps (Sections IV and V).

IV. PHASE 1 - EVALUATING THE DOCUMENTATION

In this Section, we present the method and results for the
case study conducted to assess how the documentation influ-
ences the selection and development of the task in software
crowdsourcing. We analyzed the perspective of crowdworkers
(with previous industry experience, but no experience in
crowdsourcing) while selecting and working on a task.

A. Course Description and Participants’ Profile

We conducted the study with the 20 professionals attending
to a graduate course on Collaborative Software Development,
as an assignment of the course. In addition to Software
Crowdsourcing, the course syllabus also included the topics
of Web 2.0, Global Software Engineering, Open Sourcing,
Agile and Large-Scale Agile Development, and Continuous



Software Engineering. The assignment lasted 16 weeks, the
period comprising the course duration. An introductory one-
hour long lecture on software crowdsourcing was given on the
first week by the course instructor followed by a 30 minutes
TopCoder presentation by one of the co-authors, with 15 years
of experience in the industry. Participants have, on average, 12
years of working experience in software development, with ex-
pertise mostly in Java, C, C++, HTML, JavaScript, CSS, .NET,
among other technologies. None of the participants reported
having previous experience with software crowdsourcing.

B. Research Method

We organized this phase into two iterations of 8 weeks
each to enable the participants to get familiar with TopCoder
and understand the competition model. We highlighted that
the participants were not obligated to submit task solutions
in this first iteration. However, the submission was expected
in iteration 2, so that the participants could experience the
whole process, including the feedback and reward steps after
the submission. Two participants won the first prize (one of
the prizes was about $ 1,500.00) and two others had their
solutions financially rewarded given their recognized quality.

The process of choosing a task to work on was free of
rules, except by the request of picking among the Competition
tasks only to allow for a complete experience, including task
browsing and selection, completion, delivery, and validation,
within the assignment time frame. For each of the two 8 weeks
long iteration, the participants received 2 weeks to indicate
their task selection (Iteration 1: Weeks 1 and 2, Iteration 2:
Weeks 9 and 10) and 6 weeks to complete and submit it
(Iteration 1: Weeks 3 to 8, Iteration 2: Weeks 11 to 16).

We made use of questionnaires and a work diary to col-
lect data in both iterations. The use of diaries enables the
researcher to follow the participant’s continuous behavior
with minimal intrusion [9]. This type of collection has been
routinely used in longitudinal studies in other areas and more
recently in Software Engineering (e.g., [10], [11]). We chose
to conduct a diary study because, as reported by Davidson et
al. [10], we could not observe our participants. They were able
to work whenever they wanted, conducting the work at their
chosen time and place. Therefore, it was not possible to be
with them every time they were working on the assignment,
then we decide to use diaries to follow their journey. We chose
to use unstructured diaries, in which the participants could
write anything they wanted about the process.

A shared-empty diary was initially created and could be
accessed by the participant and two of the co-authors. Partici-
pants were motivated to freely write throughout the assignment
duration. These co-authors commented and discussed online
the diaries at least twice a week. This interaction through the
diary entries is an important mechanism for researchers to
obtain the expected level of detail in a study [12]. Interactions
mostly involved clarification requests, decision justifications,
and information addition requests.

In regards to the questionnaires, they were applied in three
moments, and previously validated by two researchers and

piloted with 3 former participants of a previous course session.
The three applied questionnaires are described below:

(1) Participant’s profile: applied in the first week to identify
the participants profile with regard to their skills and experi-
ence with software crowdsourcing.

(2) Task selection: completed by the end of the second
week of each iteration (Weeks 2 and 10) to record the partici-
pants’ understanding of the task description before completion
started; selection process, including information on task type
(e.g., first to finish, development, design); and reasons for task
selection (and disregard of candidate tasks, if applicable).

(3) Task development: completed by the end of the eighth
week of each iteration (Weeks 8 and 16) and aimed to collect
the participants’ perceptions regarding the task completion and
solution submission. The following information was collected:
task title; completion status (delivered/not delivered) and, in
case it was not delivered, reasons for not doing so; and
overall experience. As for the documentation, we asked the
participants to indicate their level of agreement using a 5-
point Likert-scale with the quality of the task’s documentation
(general and detailed description, including supplementary
documents) based on a set of predefined criteria. We defined
the criteria (atomic, complete, precise, cohesive, feasible, con-
cise, unambiguous, testable, and correct) based on BABOK’s
[13], [14] and on Wiegers’ lists [15]. Finally, we asked for
improvement recommendations.

Finally, we conducted a structured retrospective session
in the last week (Week 16) upon the completion of the
second task. The session lasted 90 minutes and aimed at
providing the chance to the professionals comment on the
overall experience and reported data. We handed out a printed
copy of each participant’s third questionnaire responses, more
specifically those related to the quality criteria, and asked the
participants to revisit the task documentation, also printed out,
and highlight documentation excerpts that led them to indicate
such level of agreement to each of the criteria. For instance, if a
participant indicated that a task was ambiguous, she was asked
to indicate which parts of the task documentation influenced
her to consider ambiguity.

The data were analyzed using qualitative content analysis,
following the steps proposed by Krippendorff [16]: orga-
nization and pre-analysis, reading and categorization, and
recording the results. We applied it to the answers to the open
questions of the questionnaires, the diaries and the transcripts
and documents from the retrospective session. The analysis
was conducted primarily by the first author, with weekly
discussion meetings with the other co-authors, iterating until
reaching consensus on the themes. Thus, we identified themes
among the collected data, as reported in the following section.

C. Results

All the participants selected tasks to work on in both
iterations, but only 10 of them submitted their solution during
Iteration 1; this number increase to 11 in Iteration 2. Among
the reasons for the non-submission in Iteration 1, we found the
following: lack of technical knowledge to achieve the objective



of the task (P1 - Participant 1, P3, P11, P19); underestimating
the time needed to finish the task (P5, P9, P10, P12, P17); and
difficulty in setting up the local workspace (P14). In Iteration
2, we identified the following reasons: lack of information in
the description of the task (P3, P5, P16); difficulty in setting up
the local workspace (P6), lack of time to investigate a solution
(P11, P13, P14, P19), and lack of technical knowledge (P20).

Despite the difficulties, the participants mentioned their
interest in learning new technologies (P1, P5, P6, P9, P10,
P20), seeking feedback for their solutions (P8), participating in
the competitions (P1), and even seeking for a financial reward
(P3, P4, P10, P12, P14). Although most of them mentioned
beforehand that they were regular or little satisfied with their
experience, 16 (80%) mentioned that would contribute to
TopCoder if they had time available.

Selected Tasks. In Iteration 1, the participants selected tasks
of the following types: programming (11 participants), code
design (3), interface design (2), interface prototyping (2), bug
hunt (1), and generation of ideas to solve a specific problem
(1). The 20 participants selected 13 distinct tasks. In Iteration
2, the programming tasks remained the most selected (by
10 participants), followed by code design tasks (5), interface
prototyping (3), and interface design (2). In this iteration, the
participants selected 12 distinct tasks.

Task Selection. In Iteration 1, the participants (14 out of 20)
looked for tasks they had prior knowledge on. Some of them
indicated that they searched directly for tasks associated with
the programming languages they were familiar with: “My main
criterion was finding something close to what I do at work.
This task indicated the tags ‘.Net Core’ and ‘SQL Server’
in the general description, technologies I know” (P20). Other
participants avoided certain software development activities –
“I searched for tasks related to software or business analysis
since this is my background; I ran away from coding” (P14).

The delivery deadline was another considered reason (7
out of 20), either because of the participants’ availability—“I
wanted a task with a reasonable timeline. I ended up choosing
one I think I will have time to finish” (P5)—or because they
believed that the TopCoder estimation was adequate – “I think
it is feasible within the provided timeframe” (P6).

Feeling motivated or challenged to solve the problem was
another factor that influenced the task selection (2 participants)
– “Curiosity to know if I can resolve the task” (P18). Others
wanted to have the opportunity to learn something new – “I’m
interested in AI and especially in IBM’s tools for the topic. I’ll
take the opportunity to find out how these tools work” (P7);
or to be rewarded – “I foresee the possibility to be among the
winners and maybe receive a reward for my effort” (P1).

Understanding the task documentation also appeared as a
reason (4 out of 20) – “Among all open tasks that I felt
qualified to work on, this was the one that seemed to me to
have the best presentation and a description easy to follow”
(P9) and “What called my attention was the simplicity of the
description. It was very easy to understand it” (P18).

In Iteration 2, the concern related to having prior knowledge

to execute the task, including mastering the required pro-
gramming language/technology, also prevailed (11 out of 20
participants) — “I know well bootstrap, HTML and CSS.
Among the options, this was the task that seemed the best
fit to my profile” (P12). However, more participants took the
opportunity to learn something new (7 participants mentioned
this reason) – “As I invest in Bitcoins, but without knowing
for sure how digital coins and blockchain work, I decided to
try this task to learn about how they work” (P8).

The worry with the delivery deadline was of lesser impor-
tance (2 participants) – “I believe I’ll be able to conclude on
time” (P4) and the expectation of being rewarded, although
one participant received a reward in Iteration 1, was not
mentioned now. The need to understand the task description
was mentioned by 4 participants – “I work with data visual-
ization. When reading the title of the task, followed by detailed
and rich supplementary documentation, I promptly became
interested” (P1) and “The API is in JavaScript and is clearly
presented in the task documentation” (P7).

An interesting finding is that the factors that motivated the
selection of a task were also influential for not selecting
other tasks. For example, in Iteration 1, the concern with
the lack of knowledge was the most mentioned factor among
the participants (cited by 18 out of the 20) – “The fact that the
tasks require programming languages that I am not proficient
was demotivating. I discarded these tasks” (P8) and “Despite
working with graphic design, some [design] tasks required
specific knowledge, like Adobe Illustrator” (P14). This fac-
tor was followed by the concern with the delivery deadline
(mentioned by 7 participants) – “Several coding tasks that I
inspected seem to have a very short completion time, which
makes me think that TopCoder is geared towards specialists
with the local workspace ready to go” (P5). The concern
with the understanding and quality of the documentation also
appeared here (3) – “It is impossible to work on a task with
lack of clarity of what is expected. I could not find the missing
information even in the supplementary material” (P19).

Similarly, in Iteration 2, tasks were also disregarded because
of participants’ lack of knowledge (16 participants) – “From
the description I am inferring that I need to be an expert in
this programming language” (P14). The delivery deadline and
the time to be invested (7 participants) were also concerns –
“Available tasks are offering 2 or 3 days for resolution only”
(P9). The lack of motivation to solve a task was cited by 2
participants: “I honestly do not have an interest in this [task]
subject” (P8), and the expectation of being remunerated was
also mentioned (1) – “I wanted to consider this challenge but
it was just for fun, it does not offer any reward” (P7).

The understanding and quality of the task documentation
becomes a more prominent factor (7) – “I couldn’t grasp the
goal of the task, it was poorly written” (P10) and “I definitely
didn’t understand the business rule. I even asked a colleague
for help but he didn’t understand either” (P11).

Task Quality Criteria. Regarding the overall quality of the
tasks documentation in Iteration 1, 18 out of the 20 participants



indicated that they were “excellent, very good or good”; while
two indicated that it was of “low quality”. When considering
the listed quality criteria, most of the task descriptions were
considered “atomic” and with “complete, accurate, cohesive,
and feasible descriptions”, and “concise, unambiguous, and
correct” (16 or more participants totally or partially agreed).
Also, among those who disagreed that the documentation is
“accurate”, one mentioned that “sometimes the information
is very summarized and in other cases, very extensive. The
ideal was to have only what is needed” (P2). P1 disagreed
that the information is “correct” – “The description mentioned
that an additional material describing metrics to be used was
available in the forum, but what was indeed available was a
note pointing out to an external link”. For the testable criterion,
10 participants agreed and 10 remained neutral about it – “I
don’t think it is possible to test these scenarios, I’ll see” (P6).

In Iteration 2, there was a decrease in the perception of
the overall quality of the documentation. Thirteen participants
indicated that the documentation was “very good” or “good”
and 7 that it was “of low quality” or “poorly described”.
This perception was reflected in the evaluation of the quality
criteria of the task documentation. Apart from the “feasible”
and “concise” criteria (17 participants totally agreed/partially
agreed), for the other criteria (“atomic, complete, precise,
cohesive, unambiguous, testable, and correct”), 10 participants
neither agreed nor disagreed, and partially or totally disagreed.
Part of the detailed comments on these criteria is reported as
part of the improvement recommendations.

Improvements to the Tasks Documentation. Although some
participants pointed out that “the documentation was very
clear” (P6) and “complete” (P18), a set of improvement
recommendations were suggested. In Iteration 1, one partic-
ipant suggested to add detailed information in the open call
description – “In my opinion, it lacked essential information”
(P9). Another participant believes that “a brief summary of the
task” should be included next to the task title “with two or
three lines because it took a lot of patience and good faith to
infer from the task title only” (P3).

As for the supplementary documentation, accessible only
by those who subscribe to a certain task, participants (3 out
of 20) suggested that it should “include the target audience of
the resulting solution, so that I can use proper wording for this
audience” (P1) and that this additional documentation should
be made available immediately “at the time of enrollment
in the task” (P16). It was also noted that “...explanatory
videos or diagrams to complement the textual explanation
could improve the understanding of what should be done”
(P11) and that “mockups and the description of the behavior
expected by stakeholders would have helped to understand
the context of use and the actual need for the request” (P7).

The participants suggested that information about the
prerequisites (or task requirements) for working on the task
should be explicitly added to the documentation – “They
should clarify the tools necessary for task completion, for
example” (P21). Also, the acceptance criteria – “It would

be important to know the quality and tests criteria for the
solution” (P4) and “a checklist to indicate that the task was
terminated correctly could help a lot, like the agile accep-
tance criteria” (P10). The way of evaluating the delivered
results was also a nice-to-have item – “I would like to know
how the choice for the best solution will be made” (P4).
Furthermore, the submission process needs to be explicit –
“The submission process was not clear... the form of
submission could have been better explained” (P15) and
which artifacts should be delivered – “it lacked an explana-
tion of what was precisely necessary to be in the deliverable
since the task required the product design explanation” (P17).

It was also suggested that the task documentation should
“better describe the [software] requirements” (P4) so that “it
reduces the need for reading several messages in the forum
with explanations that were supposed to be part of the docu-
mentation in the first place” (P2), or still, “having to ask [in
the forum] and receive back unsatisfactory responses” (P9).

The suggestions for improvement were repeated almost
entirely in Iteration 2. Some participants mentioned that it
would be important, as for the general description of the
documentation, “to present descriptions that clearly separate
the technical aspects of the Instructions on TopCoder” (P1)
and “seek to structure a bit the description of the task,
like, indicating the goal, mentioning what must be done and
delivered, so anyone will be able to understand it” (P6).
The standardization of the structure of the tasks has been rec-
ommended by 3 participants – “Each task has a different for-
mat. It’s so hard to grasp the different structures. It would be
nice if a standard would stand out” (P14) and “standardization
could come in the flexible format as long as it was made easier
to identify any missing information” (P19).

Participants also added, as for the supplementary documen-
tation, that instructions for setting up the environment should
be provided – “It would have been helpful to know more about
the IDE assembly and the configuration of the libraries” (P11)
and “improve the technical details of the setup environment.
Maybe create a separate session for that?” (P13). And they
reinforced the importance of stating the prerequisites of the
task – “The task description did not state that I needed to
download the Ethereum wallet. It took me hours to find out
that this was a prerequisite” (P8) and “mention the necessary
tools” (P17). Expliciting the acceptance criteria was also sug-
gested – “The acceptance criteria should be better described,
showing the main points that need to be met” (P12) and details
of the submission guidelines – “The greatest difficulty is to
identify what is being requested as a deliverable. In several
tasks, there is no information about what is requested (if a file
of a specific program, such as Sketch, Photoshop, Microsoft
SQL) or if it’s a generic image... So having a box that clearly
indicates which artifacts need to be delivered... would help not
only to identify what is desired but also to filter the tasks I
consider to be able to accomplish” (P3).



Fig. 5. Proposed documentation structure model.

D. Proposed Documentation Structure Model

In this study, through a qualitative analysis of work diary
and questionnaire data, we observed that the process of
choosing tasks in software crowdsourcing is heavily based
on the information provided in the task description. The
participants made recommendations for improving the doc-
umentation based on their experiences with the study. These
recommendations are expressed through a set of information
that, if presented as part of task description, could facilitate
the process of task selection and development. This identified
information is highlighted in Figure 5.

More specifically, the information regarding the task sum-
mary (challenge overview) and the financial rewards details
(payments), presented as standard items in all TopCoder tasks
(black icons) remain important. Information about the required
platforms and technologies, and the submission guidelines
(blue icons) were suggested to become mandatory items. The
presentation of this information would enable a quick evalua-
tion of whether a crowd member has previous knowledge, if
she has the required resources in place, as well as to identify
what is expected in terms of artifacts to be delivered.

We also identified that a set of information that is presented
in some tasks, as part of the supplementary documentation de-
scription, should be explicitly cited in all tasks to facilitate the
identification of prerequisites and comprehension of what is
requested (green icons). This information is as follows: related

links, environment setup, task requirements (or prerequisites),
related tasks, tools, documentation, and acceptance and testing
criteria. The organization of the suggested documentation
items is illustrated in Figure 5. The item Reliability rating
and bonus, used to rank the developer in TopCoder, is not
a piece of task-related information but is kept as part of the
task description model given that it is intrinsic to the platform
itself.

It is important to reinforce that we propose a documentation
model for the tasks in the form of a logical structure for
information aimed at standardizing the documentation and
facilitating its reading and understanding. However, we do not
define or enforce the way information should be described.
Thus, it is essential that the documentation follows a set of
rules and standards (either textually or with the use of graphic
elements), to make the information clear and objective to the
crowd members. The change in the structure implies that the
client or the crowdsourcing platform needs to be more careful
when providing or defining the task documentation in order
to maintain an organized information structure.

V. PHASE 2 - EVALUATING THE PROPOSED MODEL

In this phase, our goal was to preliminarily evaluate to
what extent the existing documentation adhere to our proposed
model, and the perception of users about this model.



A. Participants

This study was conducted with 10 professionals who at-
tended to another edition of the Collaborative Software De-
velopment graduate course. The participants had, on average,
10 years of experience in industry, and no previous experience
related to TopCoder. All professionals have previous experi-
ence as developers although one is currently working as a UX
designer, another as a product manager, and a third one on
quality assurance. Eight of them work in small to mid-size
companies and two in large IT multinationals. Projects they
work on vary from finance and education to HR and media
systems. Similarly to the Phase 1, the study was conducted
as part of an assignment that had an 8 weeks-long period to
be handed in, and again an introductory lecture on software
crowdsourcing and TopCoder were offered in Week 1. Once
again, one professional received a reward for her solution (3rd
place) and two others were asked to resubmit their solutions
with improvements during the review and feedback phase.

B. Research Method

Differently from Phase 1, this phase of the study was
designed to happen in a single iteration. We requested the
participants to spend some time lurking in the TopCoder in
order to familiarize themselves with the platform and the
competition model. After this initial activity, we asked the
participants to select a task. The selection of the task was
free, so the participants would choose a task that they were
able to develop and submit within the assignment period.

At the end of the 8-week period, each participant had
selected a task and submitted a solution. In terms of de-
liverables to the research, as a means of providing us data
about their participation, the participants were requested to
provide answers to a survey questionnaire. The questionnaire
was provided after they concluded the tasks. We requested
them to review the task they had worked on, reflecting about
the process of task selection and execution, focusing on how
they would evaluate the documentation, as an open-ended
question (Q1). This was followed by a close-ended question
asking them to evaluate to what extent they could identify
the elements of the proposed structured in the documentation
provided in the task that they worked on (Q2). In addition,
we asked them to evaluate how the information provided in
each item of the proposed model would help and motivate
them to select and execute the tasks (Q3). We asked Q2 and
Q3 by means of 5-point Likert-scale items, followed by an
open-ended box asking them for further information about
their answers.

The participants also wrote a 4 pages-long experience report
and participated in a retrospective session in Week 8 that aimed
to debrief the participants on their experience. The session
lasted 90 minutes, and the participants had the opportunity
to discuss the process, the issues with the documentation, and
how they feel about the model we were proposing. These were
additional data used to supplement the survey results.

C. Results

The analysis that we present refer to the questions about the
task description presented and the adherence of the description
with the structure proposed in our model. The results are
presented in Figure 6 in which is possible to observe the agree-
ment level regarding the mapping between the information
made available in the task, and each element of the model.

As it is possible to observe, the participants could find most
of the content that match the model elements. Some of them
had an agreement level of 100% (“challenge overview” and
“submission guidelines”) or really close to it (“acceptance and
testing criteria” and “task description”). This is justified by
the current structure of the tasks, which has some mandatory
fields. On the other hand, items like “related links,” “environ-
ment setup,” and “related tasks” had a really low acceptance
rate. This can be easily explained since some tasks did not
have any kind of related task or link. Following up on that,
one thing that needs to be observed in the graphic is the high
number of neutral answers. It happened because in many cases
the tasks did not require a specific kind of information, so the
participants informed a neutral answer (meaning it does not
apply).

Although the results seem to show that the information
available in the task covered the elements of our proposed
model, by analyzing the answers provided to the open-question
that came before this one (Q1), we found that the partici-
pants had issues to find the information. For example, P21
mentioned that “the description of the task was well created,
however, there was a lack of organization without a clear
separation between sections... the information organization
was messy.” A similar problem was reported by P28: “...a
good amount of information was available, however, some
information was missing and the task became ambiguous.”

In addition, the participants mentioned some potential sug-
gestions, that are in-line with the structure proposed. For
example, P30 suggested to “concentrate all the prototype
screens in a single place along with the required skills”, while
P25 mentioned that it would be a good idea to “standardize
the description with some mandatory fields” (P35).

Thus, we can conclude that, although the information is
provided (in the task documentation, forum, and sometimes
outside the platform), it is not trivial for the crowdworkers
to find the right piece of information. Therefore, it becomes
necessary to reorganize the information, so it can be found
more easily. The information provided as justification for the
answers to the Likert-scale shows that the participants believe
that the structure proposed can be beneficial. They mentioned
that “all the elements are rather important [to organize the
documentation]” (P25), and “the elements are really important
and necessary for the understanding of the task.” (P27).

In Q3 our goal was to investigate how the proposed model
would support crowdworkers addressing their concerns and
motivating them to work on a task. To do so, we built upon
the findings of Phase 1 about motivation and reasons to select
a task. When we asked the participants to reflect about how



0%

0%

10%

10%

10%

10%

0%

10%

10%

50%

20%

10%

100%

100%

90%

90%

60%

60%

60%

50%

40%

20%

10%

0%

0%

0%

0%

0%

30%

30%

40%

40%

50%

30%

70%

90%

Submission guidelines

Acceptance and testing criteria

Supplementary Documentation

Task description

Tools

Related tasks

Task requisites

Environment setup

Related Links

Technologies

Platforms

Challenge overview

100 50 0 50 100
Percentage

Response Completely Disagree Disagree Neutral Agree Completely Agree

The documentation of my tasks presented ...

Fig. 6. Adherence of the task description with the elements of the proposed model.

the model would support them with a set of items, we got the
answers presented in Figure 7.

As it is possible to observe, most of the participants agreed
that the proposed structure would help them identify and
better understand different aspects of the task. We would
like to highlight the item that mention “better understand
the task description,” which represents the main goal of the
proposed model. For this item specifically, the agreement
level was 100% (3 participants agreed, and 7 completely
agreed). This shows the potential of a reorganization and better
information presentation, as mentioned by P26: “I believe
that the suggested elements to standardize the documentation
may support the understanding of the tasks, their goals, pre-
requisites, etc.”

In addition, we would like to highlight that there was no
disagreement with two other items, namely “identify if I have
the knowledge to work on the task” and “find and understand
the supplementary documentation.” For the first one, the infor-
mation is actually already provided, but, having it structured
as technologies and platforms may have a difference. For the
latter, from the tasks, we could see that sometimes this kind
of information was provided in the forums (in some cases just
when requested), and in some cases, it was placed outside of
the platform. Thus, having this information in a place reserved
for it may benefit the crowdworkers.

It is also important to mention that some items had some
level of disagreement. Two of them received two negative
answers: “identify if I can learn something new” and “identify
who are the final users of the solution.” Although the first
one seems to be related to the subjectivity of the learning
experience, the second item clearly represents something that
is not explicit from the structure proposed.

Finally, two participants mentioned that, although the pro-
posed structure seems promising, it may have pitfalls, mainly
if it is not well used by the requesters. This is clearly reported

by P24, who said that: “the elements structure itself does not
guarantee that the task description will be improved. I mean
that, if the quality of the information provided is not good
enough, the structure will not bring benefits.”

VI. LIMITATIONS

The participant selection (based on a convenience sample)
may pose a threat. We would like to highlight that the
participants had previous experience in software industry, most
of them (16 out of 20 in Phase 1 and 8 out of 10 in Phase 2)
were working (full or part-time) in industry during the course.
Also related to the sampling, we understand that the regional
context and the small number of participants may not enable
generalizing our results [17]. In addition to it, the reduced time
to perform some tasks may have restricted the participants
to a limited amount of tasks, since the submission of the
solution was expected within the course period. In addition, the
TopCoder had been unavailable for 5 consecutive days close to
the Iteration 2’s deadline (Weeks 14 and 15) in Phase 1, which
may have hindered some participants with availability in this
period. The participants also noticed that in the same period
the available tasks had 2 to 3 days short submission deadlines,
which is not a common practice in the platform. A strategy
used to minimize the impact of the tasks selection was to give
the participants freedom to choose among the available ones.
Thus, each participant, regardless of her previous experience,
could select a task to which she had interest and required skills.
In this sense, there was a reproduction of the actual process
of tasks selection in Topcoder. This freedom should improve
the validity of our study as recommended by Creswell [18].

VII. CONCLUSION

The crowdsourcing model has been widely adopted and
studied in software development. In the competitive model,
the documentation (task description and supporting materials)



0%

0%

20%

0%

10%

10%

20%

100%

90%

80%

80%

80%

60%

50%

0%

10%

0%

20%

10%

30%

30%
identify the information required to comprehend

the task

identify who are the final users of the solution

find and understand the supplementary
documentation

better understand the task description

identify if I can learn something new

understand if the task motivates/challenges me

identify if I have knowledge to work on the task

100 50 0 50 100
Percentage

Response Completely Disagree Disagree Neutral Agree Completely Agree

A task description presenting the proposed structure would help me ...

Fig. 7. How the structure would support the crowdworkers while selecting and executing their tasks

offered by the platform serves as a basis for members to
choose the tasks they consider appropriate and to build the
respective solutions. In this paper, we presented an empirical
study aiming to understand how this documentation influences
the task choice and execution in a competitive crowdsourcing
software environment. Factors that influence the selection and
development of a task were identified, based on the documen-
tation available, as well as which criteria define the quality
of this documentation. Finally, we could identify a series of
suggestions for improving the documentation of tasks and
proposed a model based on these suggestions. The preliminary
evaluation of the model shed some light on the need for
software crowdsourcing requesters improve task description
and structure in order to facilitate the crowdworkers’ working
experience. Further studies with a larger sample and other
software crowdsourcing platforms are welcome.

REFERENCES

[1] N. H. Thuan, P. Antunes, and D. Johnstone, “Factors influencing the
decision to crowdsource: A systematic literature review,” Information
Systems Frontiers, vol. 18, no. 1, pp. 45–68, jun 2015.

[2] K. Mao, L. Capra, M. Harman, and Y. Jia, “A survey of the use
of crowdsourcing in software engineering,” Journal of Systems and
Software, vol. 126, pp. 55–87, apr 2017.

[3] K. Lakhani, D. Garvin, and E. Lonstein, “Topcoder: Developing software
through crowdsourcing,” Harvard, vol. 610, no. 32, 2010.

[4] J. Howe, Crowdsourcing: Why the Power of the Crowd is Driving the
Future of Business. New York, USA: Random House Business, 2008.

[5] R. Prikladnicki, L. Machado, E. Carmel, and C. de Souza, “Brazil soft-
ware crowdsourcing: a first step in a multi-year study,” in International
Workshop on CrowdSourcing in Software Engineering. Hyderabad,
India: ACM, 2014, pp. 1–4.

[6] M. Hosseini, K. Phalp, J. Taylor, and R. Ali, “The four pillars of
crowdsourcing: A reference model,” in International Conference on
Research Challenges in Information Science. IEEE, 2014, pp. 1–12.

[7] K. Stol and B. Fitzgerald, “Two’s company, three’s a crowd: a case study
of crowdsourcing software development,” in International Conference on
Software Engineering. Hyderabad, India: ACM, 2014, pp. 187–198.

[8] A. L. Zanatta, L. Machado, G. Pereira, R. Prikladnicki, and E. Carmel,
“Software crowdsourcing platforms,” IEEE Software, vol. 33, no. 6, pp.
112–116, nov 2016.

[9] G. Symon, Qualitative research diaries. Essential Guide to Qualitative
Methods in Organizational Research. London, UK: Sage, 2004.

[10] J. L. Davidson, U. A. Mannan, R. Naik, I. Dua, and C. Jensen,
“Older adults and free/open source software: A diary study of first-time
contributors,” in OpenSym ’14. New York, NY, USA: ACM, 2014.

[11] I. Steinmacher, T. Conte, C. Treude, and M. A. Gerosa, “Overcoming
open source project entry barriers with a portal for newcomers,” in Int’l
Conf. on Software Eng. Austin, USA: ACM, 2016, pp. 273–284.

[12] J. Rieman, “The diary study: A workplace-oriented research tool
to guide laboratory efforts,” in Conference on Human Factors in
Computing Systems. Amsterdam, The Netherlands: ACM, 1993, pp.
321–326. [Online]. Available: https://dl.acm.org/citation.cfm?id=169255

[13] I. I. of Business Analysis, A Guide to the Business Analysis Body of
Knowledge (BABOK) V2. Toronto, Canada: IIBA, 2009.

[14] ——, Guide to the Business Analysis Body of Knowledge (BABOK) V3.
Toronto, Canada: IIBA, 2015.

[15] K. Wiegers, Software Requirements. Redmond, USA: Microsoft, 2013.
[16] K. Krippendorff, Content Analysis: An Introduction to Its Methodology.

New York, USA: Sage, 2018.
[17] J. E. Mcgrath, “Methodology matters: Doing research in the behavioral

and social sciences,” Readings in HumanComputer Interaction, vol. 2,
pp. 152–169, 1995.

[18] J. Creswell, Research Design: Qualitative, Quantitative, and Mixed
Methods Approaches, 5th ed. Los Angeles, USA: Sage, 2018.


