
How Long and How Much:
What to Expect from Summer of Code Participants?

Jefferson O. Silva
Pontifical University

of São Paulo
São Paulo, Brazil
silvajo@pucsp.br

Igor Wiese
Federal University of
Technology, Paraná

Campo Mourão, Brazil
igor@utfpr.edu.br

Daniel German
University of

Victoria
Victoria, Canada

dmg@uvic.ca

Igor Steinmacher
Federal University of
Technology, Paraná

 Campo Mourão, Brazil
igorfs@utfpr.edu.br

Marco A. Gerosa
Northern Arizona

University
Flagstaff, USA

marco.gerosa@nau.edu

Abstract—Open Source Software (OSS) communities depend
on continually recruiting new contributors. Some communities
promote initiatives such as Summers of Code to foster contri-
bution, but little is known about how successful these initia-
tives are. As a case study, we chose Google Summer of Code
(GSoC), which is a three-month internship promoting software
development by students in several OSS projects. We quantita-
tively investigated different aspects of students’ contribution,
including number of commits, code churn, and contribution
date intervals. We found that 82% of the studied OSS projects
merged at least one commit in codebase. When only newcom-
ers are considered, ~54% of OSS projects merged at least one
commit. We also found that ~23% of newcomers contributed
to GSoC projects before knowing they would be accepted.
Additionally, we found that the amount of commits and code of
students with experience in the GSoC projects are strongly
correlated with how much code they produced and how long
they remained during and after GSoC. OSS communities can
take advantage of our results to balance the trade-offs involved
in entering CCEs, to set the communities’ expectations about
how much contribution they can expect to achieve, and for how
long students will probably engage.

Keywords: Google Summer of Code; Community Code En-
gagement; Open Source Software; Newcomers; Sustainability;
Mining Software Repositories

I. INTRODUCTION
The sustainability and evolution of several open source

software (OSS) communities depends on the influx of new
volunteers [1]. Newcomers are needed not only to provide
the communities with fresh ideas [2], but also to accomplish
communities’ valuable chores [3]. Many OSS communities
have failed due to insufficient volunteer participation [4].

OSS communities are increasingly joining or promoting
community code engagements (CCE), which are short-term
software development initiatives. These engagements in-
clude Summer of Code internships that promote software
development by students during the summer holidays [5].
Examples include Google Summer of Code (GSoC)1, Rails
Girls Summer of Code (RGSoC)2, Julia Summer of Code

1 https://developers.google.com/open-source/gsoc/
2 http://railsgirlssummerofcode.org/

(JSoC)3, and Outreachy.4 A variation on Summers of Code is
the so-called Semester of Code engagements, which include
Facebook Open Academy 5 and Undergraduate Capstone
Open Source Projects.6 While Summers of Code typically
occur during holidays and may provide stipends and men-
tors, Semesters of Code occur along with regular course
studies, possibly involving faculty members and providing
students with academic credits [6].

Some CCEs are held by high profile organizations, such
as Facebook, Yahoo!, and Google, which are potentially
more attractive to newcomers than volunteer self-guided
contribution to OSS [7], [8]. While contribution in CCEs
may potentially provide students with attractive rewards,
such as CV-building, stipends, and learning, little is known
about how successfully CCEs retain students as committers,
or whether the OSS projects merge the students’ contribution
into codebase. The current literature on CCEs primarily
provides evidence on retention and code contribution for
OSS projects in the scientific software domain [5], [9]–[11],
with findings based on students’ and mentors’ subjective
perceptions. Alternatively, Schilling et al. [12] mined soft-
ware repositories to quantify students’ retention, but only to
the KDE project. Thus, not only little is known about how
much CCEs promote code contribution in general, but there
is also, to our best knowledge, no empirical study that quan-
titatively investigates retention and code contribution for
more than one OSS project.

To understand the amount of contribution (i.e., code
churn and commits) that are merged into codebase, and how
long students contribute before and after GSoC, we answer
the following research questions (RQ).
RQ1. How much code do CCE students contribute to
codebase?

RQ1a. How many commits/code churn in codebase are
contributed by the students?
Motivation: Answering RQ1 may help OSS communi-

ties set their expectations regarding the amount of code con-
tributed by Summer of Code students.

3 http://julialang.org/blog/2015/05/jsoc-cfp/
4 https://wiki.gnome.org/Outreachy
5 https://www.facebook.com/pg/OpenAcademyProgram/about
6 http://ucosp.ca/

Approach: We split students into newcomers and stu-
dents-with-experience. We considered that newcomers are
students who did not have any commits before the an-
nouncement date of mentoring organizations and are not
former GSoC students. We refer to the students who do not
meet these criteria as students-with-experience. We also split
the commits to GSoC projects into 3 contribution periods:
before, during, and after GSoC. For each period, by using a
unique commit identifier, we counted how many of the stu-
dents’ commits were merged in codebase. We assessed how
much code students added by calculating the code churn (i.e.,
lines added + lines removed) in each commit.

Findings: Merged commits occurred in all periods. Most
OSS projects (~82%) merged at least one commit authored
by students. When only newcomers are considered, ~54% of
OSS projects merged at least one commit.
RQ2. How long do students contribute before and after
CCEs?

RQ2a. What was the students’ contribution before and af-
ter GSoC?
RQ2b. Is previous contribution associated with students’
retention?
Motivation: The answer to this question may help OSS

communities manage expectations for attracting new long-
term contributors.

Approach: We estimated contribution after GSoC by
studying the interval between GSoC end date and last com-
mit, contributions, and the count of distinct contribution days
(i.e., distinct commit dates). Contribution before GSoC was
estimated analogously, but considering the interval between
first commit and GSoC kickoff. We tested correlation of
metrics from both periods.

Findings: 23.1% of newcomers contributed to GSoC
projects before knowing they would be accepted, while
~43% of them kept contributing longer than a month after
GSoC, ~26% longer than six months, and ~16% longer than
a year. Students-with-experience started contributing more
than a year earlier than kickoff, while ~47% of them kept
contributing longer than a month, ~33% longer than six
months, and ~23% longer than a year. For newcomers and
students-with-experience, the number of distinct contribution
days was not proportional to longer contribution intervals. In
addition, we found that the amount of commits and code are
strongly correlated with increased levels of contribution
during and after GSoC.

These findings provide empirical evidence for OSS
communities on how much student contribution they can
expect from GSoC participation, and how long students stay
before and after the program.

II. BACKGROUND AND RELATED WORK
In this section, we present work related to newcomers’

retention and community code engagements (CCE). We
begin by explaining what Google Summer of Code is, how it
works, and why we chose to study it.

A. Google Summer of Code
Google Summer of Code (GSoC) is a worldwide Google

program that offers students a stipend to write code for OSS
for a three-month period. We chose to study GSoC because
it: is more well-known compared to other internships; has
been in operation for more than 10 years; has a large number
of students from all over the world, and provides students
with a comprehensive set of participation rewards [5], in-
cluding participating in a well-known large company’s pro-
gram, community bonding, skill development, personal en-
joyment, career advancement, peer recognition, status, and
stipends.

Since GSoC began in 2005, Google has paid7 students
who successfully complete all three program phases. GSoC
has five goals.8 Goals (ii) and (iii) inspire our RQs:

(i) “Create and release OSS code for the benefit of all”
(ii) “Inspire young developers to begin participating in

OSS development”
(iii) “Help OSS projects identify and bring in new devel-

opers and committers”
(iv) “Provide students the opportunity to do work related

to their academic pursuits (flip bits, not burgers)”
(v) “Give students more exposure to real-world software

development scenarios”
Applicants must write and submit project proposals to the

OSS organizations (previously approved by Google) they
wish to work for, such as the Apache Software Foundation
and Debian. The organizations’ mentors—who are usually
regular contributors—rank and decide which proposals to
accept. When students effectively begin coding for their
GSoC projects, Google issues them an initial payment. After
the first half of the program, mentors assess their students’
work and submit to Google a mid-term evaluation. For the
passing students, Google issues mid-term payments. At the
GSoC end, mentors submit their final evaluations to Google
and students are required to submit their code. Passing stu-
dents receive their remaining payment, and are invited to a
summit in California.

B. Newcomers’ Retention in OSS
Typically, studies on retention take the perspective of the

individual developer. Thereby, intrinsic motivation (e.g.,
[13]–[15]), social ties with team members (e.g., [16]–[18]),
project characteristics (e.g., [19]–[21]), ideology (e.g., [22]),
and incentives and rewards (e.g., [7], [8], [23]) have been
found most relevant for OSS developers to continue contrib-
uting.

Zhou and Mockus [24], for example, worked on identify-
ing newcomers who are more likely to continue contributing
to the project in order to offer active support for them to
become long-term contributors. They found the individual’s
willingness and the project’s climate to be associated with
the odds that an individual would become a long-term con-
tributor.

7 From GSoC 2013 to 2015, Google paid an amount of US$ 5,500 to students
8 At the time of this writing, GSoC had removed the reference webpage with these
goals. However, the goals can be found in websites that support OSS communities,
e.g: http://write.flossmanuals.net/gsocstudentguide/what-is-google-summer-of-code

TABLE I. SUMMER OF CODE SUMMARY
 Pays

stipends?
Eligibility # of partic-

ipants 2016
Duration Incep-

tion year
Internship sponsors (2016)

GSoC Yes Any 18+ year-old student enrolled at an
accreditted university

1,206 3 months 2005 Google

JSoC Yes Since 2014, JSoC has been using GSoC’s
selection process

10 3 months 2013 MIT Lab in 2013. Google, after 2013

Outreachy Yes Women (cis and trans), trans men, and
genderqueer people. Residents and
nationals of the USA who are
Black/African American, Hispanic/
Latin@, American Indian, Alaska Native,
Native Hawaiian, or Pacific Islander.

46 3 months 2013 Mozilla, Bloomberg, Google, Intel, RedHat, Wikimedia
Foundation, Z, Cadasta, CodeThink, Debian, Fedora,
FFmpeg, Free Software Foundation, IBM, NodeJS,
Open Source Robotics Foundation, Open Stack, Xen
Project

RGSoC Yes All people with non-binary gender
identities or who identify as women
(transgender or cisgender)

50 3 months 2013 Softwire, innoQ, Mozilla, ThoughWorks, Exam
Success, AgileBloom, Open Suse, Wooga, Apcera,
Lauch School, Articulate, Ableton, Honeybadger,
ActBlue, Basecamp, GitLab, CoreOS, Spotify

Fang and Neufeld [2] built upon Legitimate Peripheral
Participation theory [25], which has been typically embraced
to explain how an individual engages in a community of
practice, to understand developers’ motivation to continue
sustainable contribution. The authors found that initial condi-
tions to participate did not effectively predict long-term
participation, but also that situated learning (i.e., the process
of acting knowledgeably and purposefully in the world) and
identity construction (i.e., the process of being identified
within the community) behaviors were positively linked to
sustained participation.

C. Community Code Engagements
As mentioned, community code engagements (CCE) are
becoming a common initiative. Table I lists main differences
among some programs. Despite its practical relevance, little
research has examined how CCEs influence new volunteer
contributions or how much of the code produced in these
programs is indeed merged to the OSS projects.

Taking the communities’ perspective, Schilling et al. [12]
used the concepts of Person-Job (the congruence between an
applicant’s desire and job supplies) and Person-Team (the
applicant’s level of interpersonal compatibility with the
existing team) from the recruitment literature to derive objec-
tive measures to predict the retention of 80 former GSoC
students in the KDE project. Using a classification schema of
prior code contributions to this project, they found that in-
termediate (4-94 commits) and high (>94 commits) levels of
prior development were strongly associated with retention.

Trainer et al. [10] also took the OSS communities’ per-
spective in a case study of a bioinformatics library called
Biopython to investigate the outcomes of GSoC (for this
project only). By analyzing interviews with the top 15 stu-
dents ranked by the number of commits, the researchers
identified three positive outcomes: (i) the addition of new
features to codebase, finding that 50% of the GSoC projects
were merged to codebase; (ii) training, finding that the stu-
dents learned new software engineering skills, such as test-
ing; and (iii) personal development, reporting that students
use participation in GSoC for career advancement. The au-
thors also found that mentors faced several challenges related
to the GSoC process, such as issues with candidates’ pro-
posal submission and ranking; mentors are often volunteer
contributors working in their spare time to help a large num-
ber of applicants write proposals.

Taking the perspective of Summer of Code organizers,
Trainer et al. [5] conducted a multiple case study of 22
GSoC projects in the scientific domain to understand GSoC
outcomes and the underlying practices that lead to them.
They found that GSoC facilitated the creation of strong ties
between mentors and students, reporting that 18% of the
students (n=22) became mentors in subsequent editions.

While these previous works help enlighten understudied
aspects of Summers of Code, their scope is restricted to a
few GSoC projects and mainly to the scientific software
domain; consequently, their conclusions may not be applica-
ble to other projects. Only Schilling et al. [12] mined soft-
ware repositories for quantifying student retention, but lim-
ited their analysis to KDE. Trainer et al. [5] and Trainer et
al. [10] collected data through interviews. Although we un-
derstand the relevance of interviews for achieving their
goals, their results on retention only represent the students’
perception on whether students kept contributing. In addi-
tion, in the work of Schilling et al. [12], it is unclear whether
any code written due to GSoC was merged in codebase.

We argue that CCEs have the potential to influence new-
comers’ experience and decision-making process. Legitimate
Peripheral Participation theory [25], when applied to OSS,
predicts that future contributors begin their involvement by
observing before coding and then passively interacting with
experienced members; this process culminates in the emer-
gence of regular contributors. However, contributing to OSS
by means of Summers of Code significantly alters this pro-
cess: a contract binds students and mentors for a three-month
period. Summer of Code students do not start at the margin;
instead, they are individually guided—and sponsored—to
become contributors. They have the time to dedicate them-
selves to the project, potentially developing strong social ties
to both the mentor and other community members. While
current studies on GSoC have targeted specific projects or
domains, our study represents a more comprehensive inves-
tigation by analyzing data obtained from mining multiple
software repositories.

III. RESEARCH METHOD
In this section, we present the method for data collection

and analysis. For data collection, we searched for the stu-
dents’ assigned projects and mined repositories. For data
analysis, we used descriptive statistics and statistical tests.

Figure 1. Method used to collect and analyze students’ interaction with their GSoC projects.

A. Data Collection
The research method followed in this study is depicted in
Figure 1. The data collection phase involved many steps,
since Google only publishes the names of the organizations
and accepted candidates, making it hard to determine the
specific project a given participant worked for. For example,
Google informs that participant John Doe was accepted by
Apache Software Foundation, but, generally, there is no
information on which Apache project John has worked on.
As the collection and verification of each student project is a
laborious and time-consuming task, we limited our analysis
to the GSoC 2013-2015 editions. We counted ~3,100 distinct
accepted students for these editions.

We randomly sampled 866 students, which offers a con-
fidence level of 95% and a margin of error of 5%. We manu-
ally searched for the students assigned GSoC projects in
source code management systems (SCM) by using their
names and the project description provided by GSoC. In
most cases, the projects were hosted on GitHub. We deter-
mined that we found their assigned projects when we had
clear evidence linking the projects in the SCM with the stu-
dents’ information and the organization (e.g., when the pro-
jects’ descriptions in the SCMs matched those of the GSoC’s
projects, or when we found web links in the students’ blogs
to the projects). We found the projects of 406 students (out
of 866), all of which were hosted on GitHub.

The next step was to identify the students’ IDs in the pro-
ject logs. First, we used MetricsGrimoire-CVSAnalY 9 to
extract information from Git repositories and store it in a
local database. The database includes information not only
about the project commits, but also about the contributors.
Second, we searched for all the IDs that students’ might have
used. We used the students’ names and emails (or combina-
tions) to decide if the IDs belonged to the same student.
Based on this, to identify the students we applied common
disambiguation heuristics, such as the ones presented by
Wiese et al. [26]. For instance, when the IDs where com-
posed of the combination of the initials of the students’ first
name with their full last names, or when the IDs were com-
posed of the students’ names initials and these initials were
used as the students’ IDs on GitHub. This yielded a final
working sample of 367 students (out of 406).

Additionally, for all students in our sample, we verified
whether they participated in previous GSoC editions. Figure
2 illustrates students’ contribution per GSoC edition. It is
worth-mentioning that a student may have participated in

9 http://metricsgrimoire.github.io/CVSAnalY/

more than one edition, but in our sample this student may
appear in only one edition. Thus, for clarification, Figure 2
depicts how many students participated in two or three GSoC
editions with letters (a-i) and we caption their meaning be-
low. We summarize students’ participation as follows: 32
(8.6%) participated in 2 editions, 15 (4.1%) participated in
all 3 editions, 13 (3.6%) participated in one edition, but were
already project members, and the remaining 307 (83.7%) are
newcomers who participated in one of the three editions
analyzed. For each edition, we include the total students in
parenthesis. In addition, we found 16 students who partici-
pated in GSoC editions prior to 2013.

As the last step, for every student in our final working
sample, we counted the number of participations as a student
and as a mentor, using the list published by GSoC and con-
sidering the editions of GSoC 2005 (first edition) to 2015.

Figure 2. Number of students by participation year

We used the student’s name and the GSoC project name
as a matching criterion. That is, when we had a match with a
student name as both student and mentor, we analyzed both:
whether the GSoC project of the mentor was related to the
GSoC project of the student, and; whether the year of partic-
ipation as a student was earlier than that as a mentor.

B. Data Analysis
To analyze the data, we split the students’ contribution to

GSoC into 3 periods: before, during, and after GSoC. We
used the official timelines (i.e., start and end dates) to classi-
fy the commits in each period.

TABLE II. SAMPLE CHARACTERIZATION.

of participa-
tions

in GSoC

of students
who participated in
GSoC as students

of students
who participated
in GSoC as men-

tors

avg contrib interval
(days) after

GSoC (std dev)

avg contrib inter-
val (days) before
GSoC (std dev)

avg # of commits to
the GSoC projects

(std dev)

avg # of
merged
commits

 1 307 9 52.0 (135) 36.3 (117) 97.0 (136) 64.3 (92)
 2 48 3 77.5 (203) 108.6 (311) 216.9 (489) 115.5 (252)
 3 8 0 74.4 (157) 37.2 (99) 115.5 (153) 89.1 (160)
 4 3 0 3.5 (305) 0.0 (0) 155.0 (174) 20.0 (17)
 5 0 0 0.0 (NA) 0.0 (NA) 0.0 (NA) 0.0 (NA)
 6 1 0 476.0 (NA) 1,603.0 (NA) 477.0 (NA) 476.0 (NA)

Although students can contribute to an OSS community
in different ways, such as opening issues, fixing bugs, or
promoting events, we use the term students’ contribution to
refer to their commits (and consequently code churn) to the
SCM. Thus, contribution before and after GSoC refer to the
commits performed before GSoC kickoff and after GSoC
ended, respectively. Students’ contribution interval refers
to the time in days that a student contributed (i.e., commit-
ted). For instance, if a GSoC edition started on the 15th and a
commit was performed on the 10th of the same month and
year, then this contribution interval is 5 days before kickoff.
Additionally, we use the concept of distinct contribution
days (i.e., distinct commit dates). For instance, if a student
performed 3 commits on the 10th day, again 5 days before
kickoff then the distinct contribution days’ count before
GSoC is 1 (i.e., one distinct commit date before GSoC).
RQ1. How much code do CCE students contribute to code-
base? To test whether a specific commit was merged to
codebase, we compared each of the student’s commits’ Se-
cure Hash Algorithm (SHA)—which uniquely identifies all
commits—to the commits’ SHAs belonging to codebase, and
grouped them by participation period. The number of the
students’ commits in codebase was obtained by counting the
number of commits in each group.

To determine how much code the students added to
codebase, we used the git-log tool, which creates a log file
for the projects repository, containing the commits’ SHA,
authors’ name, and how many lines were added and removed
for each file in a commit. Next, for every commit, we calcu-
lated the code churn and stored it in the database.

To test whether there are statistical differences in the
number of commits among the participation periods, we used
the Wilcoxon Signed-Rank Test, which can determine
whether the corresponding data population distributions are
statistically equivalent for non-normal distributions. The null
hypothesis is that the commits’ distribution in each period
tuple—m(before-during), (during-after), (before-after)—are
statistically equivalent. If the p-value is less than the 0.05
significance level, we reject the null hypothesis.

To quantify the strength of difference between two
groups of observations beyond the p-values interpretation,
we used the Cliff’s Delta d statistic, a non-parametric effect
size. For Cliff’s Delta d, the effect size is considered negligi-
ble for d < 0.147, small for 0.147 ≤ d < 0.33, medium for
0.33 ≤ d < 0.47, and large for d ≥ 0.47 [27].
RQ2. How long do students contribute before and after
CCEs? To properly determine it, we distinguish newcomers

from the students-with-experience in the assigned projects,
such as former GSoC students and project members. To
identify former GSoC students, we counted how many GSoC
editions a student participated in. To do so, we used the
GSoC’s announcement date of the accepted mentoring or-
ganizations for each year as a threshold. Thus, if a developer
started contributing after the announcement (threshold), we
considered the developer a newcomer. Otherwise, we treated
the developer as a project member. For GSoC 2013, the
announcement of the mentoring organizations was made 70
days before the coding period started. For GSoC 2014 and
2015, the announcement was made 84 days before kickoff.

Therefore, newcomers are students who did not have
commits older than the GSoC announcement date in relation
to the start date of their first GSoC edition and are not former
GSoC students. We refer to the students who did not meet
these criteria as students-with-experience.

Lastly, we correlated the collected variables using
Spearman’s correlation to test their predictive strength across
different participation periods. We used the following varia-
bles to generate the correlation matrix: contribution interval
(before & after) GSoC; number of commits (all periods);
number of merged commits (all periods); number of distinct
contribution days (all periods); and code churn (all periods).

IV. RESULTS
This section reports our results. We start by characteriz-

ing our study sample.

A. Sample Characterization
Table II summarizes the characteristics of our sample in

terms of: number of participations in the program as both
students and mentors; participation before and after GSoC in
the assigned project, and; the total and merged commits to
the projects. Note that the rows regarding 3-6 participations
may also include editions from GSoC 2010-2015.

It is worth mentioning that there are few students with 3+
participations, which can influence the analysis of participa-
tion (before/after) and commits (total/merged). Additionally,
the students who participated in only one GSoC edition are
not necessarily new to the project, and the ones with 2+
participations are not necessarily project members. We pre-
sent our results by analyzing these cases.

In Figure 3, one can observe that, considering our sam-
ple, almost half of the students had code merged after the
official GSoC timeline. In addition, many students (~19%)
had code merged only during GSoC.

Figure 3. Number of students that had commits merged to codebase before,
during and after GSoC. 48 (13.1%) students did not have anything merged.

B. RQ1a. How many commits/code churn in codebase are
contributed by the students?
To estimate how many of the students’ commits were

merged to the GSoC projects in each participation period, we
present the violin plots in Figure 4. For better data visualiza-
tion, we removed the students without any commits for that
period from the plots. We report how many students were
removed and the respective percentages in brackets after the
figures’ captions. Comparing Figure 4 (a) and (b), we can see
that some of the students’ commits were merged even before
kickoff. These commits may have come from at least three
distinct sources: students who were already project members;
former GSoC students; and newcomers. A possible explana-
tion for newcomers’ commits is that some candidates con-

tribute to GSoC’s projects to increase their odds of being
accepted. Indeed, we found mentors’ blogs (e.g. [28]) with
tips on how to be accepted.

We found support for this explanation in our data. Figure
5 depicts the number of distinct students who contributed to
their GSoC project in the 180 days before kickoff. While the
commits of students-with-experience (Figure 5b) to the pro-
ject remained relatively constant until the start of the bond-
ing period (~30 days before kickoff), some newcomers
(Figure 5a) started committing ~80 days before kickoff. This
means that newcomers started committing to the GSoC pro-
ject before they knew they would be accepted, possibly at-
tempting to show their skills to the community before selec-
tion.

Strictly speaking, most OSS projects of our sample
benefited from participation in GSoC, since in ~87% of
the cases they had at least one merged commit to code-
base. When only newcomers are considered, ~54% of
OSS projects merged at least one commit.

In Figure 4 (e), we can see that ~45% of the students did
not commit anything after GSoC. The commits of the stu-
dents who did, typically ranged between 31 (Q1) and 8,064
(Q3). In Figure 4 (f), we can observe that ~44% of the stu-
dents had commits merged to codebase, typically ranging
from 26 (Q1) to 4,452 (Q3). Hence, code was merged to
codebase in all periods.

(a) Commits’ distri-
bution before GSoC
[189/367 (~51%) did
not commit]

(b) Merged commits’
distribution before
GSoC [223/367
(~61%) did not have
any commit merged]

(c) Commits’ distri-
bution during GSoC
[99/367 (~27%) did
not commit]

(d) Merged commits’
distribution during
GSoC [151/367
(~41%) did not have
any commit merged]

(e) Commits’ distri-
bution after GSoC
[166/367 (~45%) did
not commit]

(f) Merged commits’
distribution after
GSoC [206/367
(~56%) did not have
any commit merged]

Figure 4. Commits and merged commits distribution by participation period (before, during, and after).

(a) Newcomers’ contribution before GSoC (180 days)

(b) Students-with-experience contribution before GSoC (180 days)

Figure 5. Students’ contribution 180 days before GSoC

Additionally, we used the Wilcoxon Signed-Rank Test to
understand whether the amount of commits’ distribution per
participation period per year were statistically equivalent. In
Table III, we can observe that for all years there is a large
effect size when we compare the students’ commits distribu-
tion performed during GSoC to the ones made before and
after the program. However, when we compared the com-
mits made after GSoC to the ones made before GSoC, we
could only find statistical difference for GSoC 2014, still
with a small effect size. For GSoC 2013 and GSoC 2015, we
did not find any statistical difference.

TABLE III. EFFECT SIZE AND WILCOXON SIGNED RANK TEST COMPARING
THE NUMBER OF COMMITS MADE BY GSOC STUDENTS’ BY YEAR

 2013 d 2014 d 2015 d
During vs Before 0.73 (large) * 0.67 (large) * 0.66 (large) *
During vs After 0.62 (large) * 0.56 (large) * 0.58 (large) *
After vs Before 0.01 (neglible) 0.21 (small) * 0.08 (neglible)

* p < 0.05: significance level of the Wilcoxon Signed Rank Test. d: effect size comput-
ed with Cliff’s Delta

However, when we measured the strength of this differ-
ence, we found it to be small, suggesting that, in the long
run, the commits performed after tended to return to the
levels before GSoC. This happens due to the commits of top
contributors, which can be thousands of times higher than
regular contributors. In addition, top contributors are mostly
consisted of students-with-experience. We obtained similar
results on the code churn statistical test.

Analyzing the students’ commits provides one perspec-
tive on students’ contributions; we analyzed code churn
(how much code was merged) to offer an additional perspec-
tive. Figure 6 depicts the distribution of students’ code
churn per participation period. The churn before boxplot
shows the distribution median as 1,482, with its top 25%
ranging between 8,880 (Q3) and 21,964 (upper whisker). For
the during period, the distribution median was approximate-
ly six times higher (~8,900), with its top 25% ranging be-
tween 30,132 (Q3) and 71,000 (upper whisker).

The churn after boxplot shows that the students’ code
churn significantly decreased after the program, with the
distribution median decreasing to 2,435. The top 25% of the
distribution remained high, ranging between 16,000 (Q3)

and 33,700 (upper whisker). We can understand the magni-
tude of the students’ contribution when we add the code
churns to the distributions. In this way, we can see that the
code churn before GSoC totaled 11.5M, during, 81.9M,
and after, 19.1M.

Figure 6. Students’ code churn by participation period.

C. RQ2a. What was the students’ participation before and
after GSoC?
To understand how long the students contributed to

GSoC projects, Figure 7 depicts the distribution of the stu-
dents’ contribution intervals before and after GSoC.

We split the students into newcomers and students-with-
experience. Figure 7 (a) and (c) show newcomers’ contribu-
tion intervals, in days, before and after GSoC, while Figure 7
(b) and (d) show the same information for the students-with-
experience. As previously, for better data visualization we
only show the students who kept contributing to the assigned
projects. Thus, we report how many students were excluded
and the respective percentage after the figures’ captions, in
brackets.

Figure 7 (a) complements a previous finding, by inform-
ing that many (~23%) of the newcomers contributed before
knowing whether they would be accepted in. However, typi-
cally the students had not contributed to their GSoC projects
before the program, which suggests that GSoC is indeed
attracting potential contributors.

(a) Newcomers’ contribution
interval (in days) before
GSoC [189/307 (~62%) did
not contribute before]

(b) Students-with-experience
contribution interval (in days)
before GSoC [0/60 (0%) did
not contribute before]

(c) Newcomers’ contribution
interval (in days) after GSoC
[137/307 (~45%) did not
remain]

(d) Students-with-experience
contribution interval (in days)
after GSoC [29/60 (~48%)
did not remain]

Figure 7. Contribution interval before and after (retention) distribution for newcomers and students-with-experience.

Interval	between	first	commit	

and	GSoC	kickoff	(days)	

Interval	between	first	commit	and	

GSoC	kickoff	(days)

Interval	between	GSoC	end	
date	and	last	commit	(days)

Interval	between	GSoC	end	
date	and	last	commit	(days)

(a) Distinct contribution days’ count
vs range between first commit
to the project and GSoC kickoff for
newcomers (307 students)

(b) Distinct contribution days’ count
vs range between first commit to the
project and GSoC kickoff for stud-
ents with-experience (60 students)

(c) Distinct contribution days’ count
vs range between GSoC end date
and last commit to the project for
newcomers (307 students)

(d) Distinct contribution days’ count
vs range between GSoC end date
and last commit to project for stud-
ents-with-experience (60 students)

Figure 8. Distinct contribution days’ count (# of days) before and after GSoC vs the interval (in days) between: first commit and GSoC start date for
newcomers (a) and students-with-experience (b); and GSoC end date and last commit for newcomers (c) and students-with-experience (d)

In Figure 7 (b), we can see that many students-with-
experience have long previous contribution intervals in their
assigned projects (Q1=187.2; Q3=639). By further analyzing
these cases, we found that they mostly consisted of GSoC
former students (47). In Figure 7 (c), we can see that the
newcomers did not typically keep committing to their GSoC
projects (~45%). So, some OSS projects benefited from the
newcomers’ contributions even after the official program
end.

In Figure 7 (d), as with newcomers, we can see that the
students-with-experience did not keep committing to the
repository. The long contribution interval of those who did
refers mostly to participation in subsequent GSoC editions,
which we consider a different, but valid, type of retention.
Thus, the contribution of the students-with-experience to
GSoC projects typically ranged from 114 (Q1) to 596.5 (Q3)
days after the program. In addition, we found 13 students-
with-experience (21.6%) who continued contributing regu-
larly, which indicates that some participants remained tied to
their GSoC project and participated in more than one edition.

The analysis of the students’ contribution intervals before
and after GSoC only shows one facet of contributions out of
GSoC’s timeframe, as it does not inform anything about the
contributions’ frequency. Figure 8 presents a relationship
between contribution intervals (CI) and the number of dis-
tinct contribution days (CD) in scatter plots.

In Figure 8 (a), we can observe that although many new-
comers started contributing after Google’s announcement of
accepted mentoring organizations, CDs are mostly less than
10. Only 14 (6%) of newcomers contributed more than 10
CDs.

In Figure 8 (b), we can observe that the students-with-
experience’s CIs are considerably higher than the newcom-
ers’ (who are limited to a 84-day limit of previous CIs by our
definition). However, we can see that most students have less
than 50 CDs, with the distribution median being 16 CDs
before GSoC.

In Figure 8 (c), we can see that, after GSoC, newcomers’
CI increased considerably, reaching in many cases to CIs
higher than 500 days. However, with the exception of a few
cases, CDs did not increase proportionally. For instance, we
observed a median of 5 CDs for the newcomers who con-

tributed longer than a month, 9 CDs for the ones who con-
tributed longer than six months, and 14 CDs for the ones
who contributed longer than a year.

In Figure 8 (d), we can see that, after GSoC, some of the
students-with-experience had CDs comparable to the new-
comers who contributed before knowing they would be ac-
cepted. In addition, we observed a median of 22 CDs for the
students-with-experience who contributed more than a
month, 38.5 for the ones who contributed longer than six
months, and 41 for the ones who contributed longer than a
year.

RQ2b. Is previous contribution associated with students’
retention?
Many works in literature have correlated developers’

contribution to OSS projects with numerous variables, trying
to predict early-on the ones who will continue contributing to
the OSS community (e.g., [12], [20], [29]). We correlated the
data we collected on the students to study the variables’
predictive strength, especially in different participating peri-
ods, as shown in Table IV. The variables are presented in the
main diagonal of the correlation matrix, preceded and fol-
lowed by a letter A-N. The entries in the upper triangular
refer to the newcomers’ correlations, while the entries in the
lower triangular refer to the students-with-experience corre-
lations. Participation periods are highlighted in boxes in the
lower and upper triangular of the matrix.

In Table IV, for newcomers, we can see that the correla-
tions did not show any predictive strength, as variables are
mostly weakly correlated (<0.5). For students-with-
experience, we can see that: the number of commits before
(B) and code churn before (E) are strongly correlated (>0.7)
with how much code is written during (variables F and H)
and after (variables K, M, and N) GSoC. In addition, the
variables B and E are strongly correlated with how long
students stay after the end of GSoC (variables G, J, and L).
Similarly, the amount of code students wrote during the
program showed to be good predictors regarding how much
code students wrote and how long they stayed after GSoC.
Thus, our findings complements the results of Schilling and
colleagues [12] that prior development experience in the
project are associated with higher levels of retention.

TABLE IV. CORRELATIONS ON NEWCOMERS AND STUDENTS-WITH-EXPERIENCE CONTRIBUTION.

 Newcomers’ spearman correlations
 Before GSoC During GSoC After GSoC
 B C D E F G H I J K L M N

A contrib interval before A .926 .796 .955 .860 .293 .152 .203 .166 .113 .058 .087 .050 .023
.112 B # of commits before B .852 .967 .922 .473 .334 .364 .335 .022 .221 .058 .191 .122
.004 .469 C merged commits before C .817 .806 .360 .277 .301 .414 .009 .165 .022 .161 .159
.315 .679 .325 D # of contrib days before D .911 .389 .246 .291 .243 .057 .135 .021 .117 .040
.120 .923 .499 .677 E code churn before E .459 .318 .389 .319 .025 .216 .067 .204 .119
.076 .940 .381 .481 .883 F # of commits during F .905 .883 .799 .189 .561 .321 .509 .373
.026 .825 .341 .409 .753 .897 G # contrib days during G .830 .787 .053 .403 .160 .352 .268
.075 .911 .376 .481 .886 .974 .873 H code churn during H .753 .121 .465 .247 .476 .295
.137 .598 .714 .313 .622 .653 .660 .660 I merged commits dur I .139 .427 .240 .376 .457
.019 .773 .342 .320 .726 .818 .641 .787 .535 J contrib interval after J .829 .920 .774 .735
.025 .877 .359 .441 .837 .913 .750 .881 .538 .920 K # of commits after K .908 .914 .797
.027 .815 .299 .371 .766 .853 .673 .806 .497 .957 .943 L contrib days after L .835 .778
.055 .884 .384 .473 .857 .912 .729 .915 .555 .894 .959 .890 M code churn after M .750
.102 .702 .537 .369 .712 .733 .608 .743 .710 .836 .802 .811 .797 N merged commits # after

Before GSoC During GSoC After GSoC
Students-with-experience’s spearman correlations

V. DISCUSSION
One question that may arise for some OSS communities

is how much return on their mentoring investment they can
expect in terms of code contribution and new volunteers to
OSS projects. Indeed, some communities aim to retain stu-
dents as new contributors, as evidenced by the following
excerpt:

“(…) Participating [in] GSoC will increase the visibility of Pharo
project efforts (…) We expect also to bring more people into our
community [by participating in GSoC]”
Pharo. Source: http://bit.ly/2mtN0Xr

However, especially for mentors, participation in CCEs
involves a trade-off between the effort invested in mentoring
students and the mentors’ ability to simultaneously address
the OSS project tasks, which made the Debian community
decide not to participate in GSoC17:

“Due to the lower amount of general motivation, and most nota-
bly the weakness of our projects page during the Google review
(…) Debian will not be part of [GSoC] this year. Some of our re-
curring mentors have shown some signs of ‘GSoC fatigue’, (…)
let's have a summer to ourselves to recover (…) and come back
next year” Debian. Source: http://bit.ly/2nT0h99

CCEs should benefit OSS communities and students.
Students should acquire experience, branding, and learning
by joining the OSS communities’ workforce, while the OSS
communities providing mentoring should achieve project
tasks accomplished during, and possibly after, the engage-
ments.

Even though we leave the task of investigating students’
actual learning or yet the nature of project tasks to future
research, our results suggest that some OSS communities
achieve project tasks accomplishment, especially the com-
munities that selected students-with-experience. This is un-
derstandable, since it is usually hard on newcomers to go
from the learning to contribute to the development of mean-
ingful contributions.

“GSoC is an important program, because it provides a possibility
to mentor students intensively over a relative long period of time.
The Student gets more experience, while the project [gets] tasks

done, that [otherwise] would be harder to do [by] pure volun-
teers.” LibreOffice. Source: http://bit.ly/2n1xt1u

One possible implication of our results is that when OSS
communities select newcomers for participating in GSoC,
instead of students-with-experience, they need to be prepared
to invest in the newcomers’ mentoring, without expectations
of long-term commitment, as it can be seen in Figure 7.

Not surprisingly, the period with higher contribution was
during GSoC (sponsored period), as depicted, for example,
in Figure 6. Our results showed that ~64% of the students did
not stay later than a month after the program. Based on this
finding, we suggest that communities would come up with
a strategy for handling the disappearing students, which
could be as simple as maintaining contact through email.
Future research could investigate alternative ways to prevent
students from abandoning OSS projects.

Our results also suggest that CCEs provide OSS commu-
nities with applicants’ contribution before kickoff, possibly
due to the competitive nature of the engagements. OSS
communities would offer a pre-CCE program to engage
applicants. The community would take advantage of appli-
cants’ contribution before the program, offering a formal
opportunity for applicants to show their skills and interact
with the community. As a result, the project would receive
more contributions, and have the opportunity to showcase
the community. This organization scheme could potentially
mitigate the mentors’ selection and ranking load, as they
would have more data on the applicants. This strategy could
also work for the BioPython OSS community, which experi-
enced similar problems, as reported by Trainer and col-
leagues [10].

OSS communities and CCEs organization would also of-
fer opportunities for those who were not selected to receive
stipends to participate voluntarily. In this case, the partici-
pants would be awarded with participation certificates. Thus,
even non-sponsored participants would have the chance to
acquired knowledge, experience, and branding.

There is another interesting facet related to retention that
we would like to highlight. Our results suggest that finding
top contributors, though rare, could yield large dividends for
the community, considering the number of (merged) com-

mits. The aforementioned findings—higher visibility, con-
tributing as a strategy to increase acceptance odds, merged
code during the program, and finding top contributors—may
explain why the number of OSS communities interested in
entering GSoC has increased throughout the years.

CCEs seem to be a channel of contribution to OSS pro-
jects that not only have mitigated barriers for the students
who wanted to become volunteer contributors (see Stein-
macher et al. [16] for an overview of the barriers that new-
comers usually face), but also have taken advantage of who
would never contributed otherwise.

VI. THREATS TO VALIDITY
This research has several limitations, which we here both

acknowledge and report how we aimed to mitigate. First, our
sample may not be representative of the whole GSoC stu-
dents’ population, despite our efforts to collect a representa-
tive random sample. This means that it may be possible to
reach to other conclusions with a different set of students.

A major threat is the misidentification of the students and
their projects in the SCMs, and the students’ IDs in the local
database. For instance, in some cases the student IDs, both in
the SCMs and in the local database, were actually composed
of the students’ name initials (or combinations). Although
the students’ IDs were double checked by two different re-
searchers and we excluded the cases that we were uncertain
about, it is still possible that we incurred some misidentifica-
tion.

In some cases, the same student used multiple IDs to per-
form the commits. In this case, the threats are that we could
have: incorrectly grouped IDs from different students; not
identified all the IDs used by a student; and/or identified the
IDs used in a different GSoC edition than the one under
consideration. Even though we closely inspected every stu-
dent in our sample, it is still possible that these threats weak-
ened our results.

In addition, we used the students’ and projects’ names as
matching criteria to determine whether the students partici-
pated as mentors in other editions. In the case of students
who share common names working for the same project, we
might have wrongly counted them as the same student. We
mitigated this threat by closely inspecting if the year of par-
ticipation as student was before the participation as mentor
for the same project. As we did not personally contact any
mentor, it may be the case that students delivered their final
code after the official GSoC’s end date, which by our meth-
od would be wrongly counted as retention.

Finally, our conclusions may be biased toward the num-
ber of merged commits. We do not control potentially im-
portant variables, such as programming language, code com-
plexity, or how important the merged commits were to the
communities. It may be the case that the students who had
only one merged commit contributed more—in terms of
aggregated value—than those with more merged commits.

VII. CONCLUSION
There is evidence that OSS communities expect that

community code engagements (CCE), such as Summers of
Code, may be an effective channel not only for the attraction

and retention of newcomers, but also for the code contribu-
tions made during participation [5], [9]–[11]. In this paper,
we investigated the Google Summer of Code (GSoC),
providing empirical evidence on different aspects of the
students’ contribution, such as how much GSoC fostered
contributions (i.e., commits, merged commits, and code
churn) and how long did students contribute to the assigned
projects before and after the engagements.

For analyzing RQ1 (How much code do CCE students
contribute to codebase?), for each period, we counted how
many of the students’ commits were merged in codebase.
We estimated how much code the students added by calcu-
lating the code churn (i.e., lines added + lines removed) for
each commit. We found that code merges occurred before,
during, and after GSoC, including for newcomers. Most
merged commits occurred during GSoC, although many
OSS projects merged in other periods. We also could obtain
the magnitude of students’ code contributions by analyzing
code churn’ medians: ~11.5M (before); ~82M (during); and
~19M (after).

For analyzing RQ2 (How long do students contribute be-
fore and after CCEs?), we start by differentiating newcomers
from students-with-experience. Then, we investigated con-
tribution intervals, contributions, and the distinct contribu-
tion days’ count (i.e., distinct commit dates). We found that
~23% of newcomers contributed to GSoC project before
knowing they would be accepted. After GSoC, contribution
decreased from ~43% newcomers who kept contributing
longer than a month to ~16% of them who kept contributing
longer than a year. Students-with-experience started contrib-
uting more than a year earlier than kickoff, while a year later
~23% of them were still contributing. Regardless of experi-
ence time in the GSoC project, the number of distinct contri-
bution days was not proportional to longer contribution in-
tervals.

We conclude this work highlighting that OSS communi-
ties that need achieve projects tasks accomplishment should
consider prioritizing students-with-experience, as they are
already familiar with the projects’ contribution norms and
they possibly have a lower learning curve. For the students
who kept contributing after GSoC, contributions tended to
slowly diminish, which can signal to OSS communities that
they should use their strategy for handling these students.
This can be as simple as sending email explaining the im-
portance of the students’ contribution. In addition, OSS
communities can establish a recommended period before
CCEs for applicants start contributing and interacting with
the community. Thus, applicants who start earlier and con-
tribute more would have more acceptance chances.

ACKNOWLEDGEMENTS
The authors thank CNPq (process 430642/2016-4), NAU

and FAPESP (process 2015/07399-1) for their financial
support.

REFERENCES
[1] P. Resnick and R. E. Kraut, Building Successful Online Communities:

Evidence-Based Social Design, no. May. The MIT Press, 2009.
[2] Y. Fang and D. Neufeld, “Understanding Sustained Participation in

Open Source Software Projects,” J. Manag. Inf. Syst., vol. 25, no. 4,
pp. 9–50, 2009.

[3] G. Pinto, I. Steinmacher, and M. A. Gerosa, “More Common Than
You Think: An In-depth Study of Casual Contributors,” 2016 IEEE
23rd Int. Conf. Softw. Anal. Evol. Reengineering, vol. 1, no. 1, pp.
112–123, 2016.

[4] K. Crowston, H. Annabi, and J. Howison, “Defining Open Source
Software Project Success,” in Proceedings of the 24th International
Conference on Information Systems (ICIS), 2003, pp. 1–14.

[5] E. H. Trainer, C. Chaihirunkarn, A. Kalyanasundaram, and J. D.
Herbsleb, “Community code engagements: Summer of Code &
hackathons for community building in scientific software,” in
Proceedings of the International ACM SIGGROUP Conference on
Supporting Group Work, 2014, pp. 111–121.

[6] F. J. García-Peñalvo et al., “Developing Win-win Solutions for
Virtual Placements in Informatics: The VALS Case,” in Proceedings
of the Second International Conference on Technological Ecosystems
for Enhancing Multiculturality, 2014, pp. 733–738.

[7] I.-H. Hann, J. Roberts, S. Slaughter, and R. Fielding, “Economic
Incentives for Participating Open Source Software Projects,” Twenty-
Third Int. Conf. Inf. Syst., vol. ICIS 2002, 2002.

[8] J. Tirole and J. Lerner, “Some Simple Economics of Open Source,” J.
Ind. Econ., vol. 50, no. 2, pp. 197–234, 2002.

[9] L. Christopherson, R. Idaszak, and S. Ahalt, “Developing Scientific
Software through the Open Community Engagement Process,” in
First Workshop on Sustainable Software Science: Practice and
Experiences, 2013.

[10] E. H. Trainer, C. Chaihirunkarn, and J. D. Herbsleb, “The Big Effects
of Short-term Efforts: Mentorship and Code Integration in Open
Source Scientific Software,” J. Open Res. Softw., vol. 2, no. 1, p. Art.
e18, 2014.

[11] E. H. Trainer, A. Kalyanasundaram, C. Chaihirunkarn, and J. D.
Herbsleb, “How to Hackathon: Socio-technical Tradeoffs in Brief,
Intensive Collocation,” in Proceedings of the 19th ACM Conference
on Computer-Supported Cooperative Work & Social Computing -
CSCW ’16, 2016, pp. 1116–1128.

[12] A. Schilling, S. Laumer, and T. Weitzel, “Who will remain? - An
evaluation of actual Person-Job and Person-Team fit to predict
developer retention in FLOSS projects,” Proc. Annu. Hawaii Int.
Conf. Syst. Sci., pp. 3446–3455, 2011.

[13] K. R. Lakhani and R. G. Wolf, “Why Hackers Do What They Do:
Understanding Motivation and Effort in Free/Open Source Software
Projects,” in Perspectives on Free and Open Source Software,
Cambridge: MIT Press, 2005.

[14] A. Hars and S. Shaosong Ou, “Working for free? Motivations of
participating in open source projects,” in Proceedings of the 34th
Annual Hawaii International Conference on System Sciences, 2001,
vol. 7, p. 9.

[15] J. a. Roberts, I.-H. Hann, and S. a. Slaughter, “Understanding the

Motivations, Participation, and Performance of Open Source Software
Developers: A Longitudinal Study of the Apache Projects,” Manage.
Sci., vol. 52, no. 7, pp. 984–999, 2006.

[16] I. Steinmacher, M. A. Gerosa, D. F. Redmiles, T. Conte, M. A.
Gerosa, and D. F. Redmiles, “Social Barriers Faced by Newcomers
Placing Their First Contribution in Open Source Software Projects,”
Proc. 18th ACM Conf. Comput. Support. Coop. Work Soc. Comput. -
CSCW ’15, pp. 1379–1392, 2015.

[17] I. Steinmacher, I. S. Wiese, T. Conte, M. A. Gerosa, and D. Redmiles,
“The hard life of open source software project newcomers,” Proc. 7th
Int. Work. Coop. Hum. Asp. Softw. Eng. - CHASE 2014, pp. 72–78,
2014.

[18] F. Fagerholm, A. S. Guinea, J. Münch, and J. Borenstein, “The role of
mentoring and project characteristics for onboarding in open source
software projects,” ESEM conf., pp. 1–10, 2014.

[19] P. Meirelles, C. Santos, J. Miranda, F. Kon, A. Terceiro, and C.
Chavez, “A Study of the Relationships between Source Code Metrics
and Attractiveness in Free Software Projects.”

[20] J. Colazo and Y. Fang, “Impact of license choice on open source
software development activity,” J. Am. Soc. Inf. Sci. Technol., 2009.

[21] C. Santos, G. Kuk, F. Kon, and J. Pearson, “The attraction of
contributors in free and open source software projects,” J. Strateg. Inf.
Syst., vol. 22, no. 1, pp. 26–45, 2013.

[22] K. J. Stewart and S. Gosain, “The impact of ideology on effectiveness
in open source software development teams,” MIS Q., vol. 30, no. 2,
pp. 291–314, 2006.

[23] S. Krishnamurthy, S. Ou, and A. K. Tripathi, “Acceptance of
monetary rewards in open source software development,” Res. Policy,
vol. 43, no. 4, pp. 632–644, 2014.

[24] M. Zhou and A. Mockus, “What make long term contributors:
Willingness and opportunity in OSS community,” in 34th
International Conference on Software Engineering, 2012, pp. 518–
528.

[25] J. Lave and E. Wenger, Situated learning: Legitimate Peripheral
Participation. Cambridge University Press, 1991.

[26] I. S. Wiese, J. T. da Silva, I. Steinmacher, C. Treude, and M. A.
Gerosa, “Who is Who in the Mailing List? Comparing Six
Disambiguation Heuristics to Identify Multiple Addresses of a
Participant,” 2016 IEEE Int. Conf. Softw. Maint. Evol., pp. 345–355,
2016.

[27] R. J. Grissom and J. J. Kim, Effect Sizes for Research: A Broad
Practical Approach. Lawrence Erlbaum Associates, 2005.

[28] P. Daniel, “Want to be selected for Google Summer of Code 2016?,”
2015. [Online]. Available: http://danielpocock.com/getting-selected-
for-google-summer-of-code-2016. [Accessed: 10-Feb-2017].

[29] S. Dejean and N. Jullien, “Big from the beginning: Assessing online
contributors’ behavior by their first contribution,” Res. Policy, vol. 44,
no. 6, pp. 1226–1239, 2015.

